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EXISTENCE OF SOLUTIONS OF FUZZY DELAY DIFFERENTIAL
EQUATIONS WITH NONLOCAL CONDITION

K.BALACHANDRAN AND P.PRAKASH

Abstract. In this paper we prove the existence of solutions of fuzzy delay differential
equations with nonlocal condition. The results are obtained by using the fixed point
principles.

1. Introduction

The theory of fuzzy differential equations has been studied by many authors [2-
5,9,10] by using the H-differentiability for the fuzzy valued mappings of a real variable
whose values are normal, convex, upper semicontinuous and compactly supported fuzzy
sets in Rn. Seikkala [8] defined the fuzzy derivative which is generalization of the
Hukuhara derivative in [6]. The local existence theorems are given in [9], and the
existence theorems under compactness-type conditions are investigated in [10], for the
Cauchy problem x′ = f(t, x), x(t0) = x0 when the fuzzy valued mapping f satisfies the
generalized Lipschitz condition. Park et al [5] studied the fuzzy differential equation
with nonlocal condition. Nieto [4] proved an existence theorem for fuzzy differential
equations on the metric space (En, D).

In this paper we prove the existence of solutions of fuzzy delay differential equations
with nonlocal condition of the form

x′(t) = f(t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), t ∈ J = [0, a] (1)
x(0) − g(t1, t2, · · · , tp, x(·)) = x0,

where σi : J → J, i = 1, 2, · · · , n are continuous functions and f : J × En2 → En is
levelwise continuous function and σi(t) ≤ t for all t ∈ J, g : Jp × En → En satisfies
the Lipschitz condition. The symbol g(t1, t2, · · · tp, x(·)) is used in the sense that in the
place of ′·′, we can substitute only elements of the set {t1, t2, · · · , tp}. For example,
g(t1, t2, · · · , tp, x(·)) can be defined by the formula

g(t1, t2, · · · , tp, x(·)) = c1x(t1) + c2x(t2) + · · ·+ cpx(tp),
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where ci(i = 1, 2, · · · , p) are given constants.

2. Preliminaries

Let PK(Rn) denote the family of all nonempty, compact, convex subsets of Rn.
Addition and scalar multiplication in PK(Rn) are defined as usual. Let A and B be
two nonempty bounded subsets of Rn. The distance between A and B is defined by the
Hausdorff metric

d(A, B) = max

{
sup
a∈A

inf
b∈B

||a− b||, sup
b∈B

inf
a∈A

||a− b||
}

,

where || · || denote the usual Euclidean norm in Rn. Then it is clear that (PK(Rn), d)
becomes a metric space. Let I = [t0, t0 + a] ⊂ R (a > 0) be a compact interval and let
En be the set of all u : Rn → [0, 1] such that u satisfies the following conditions:

: (i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1,
: (ii) u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥ min{u(x), u(y)}, for any

x, y ∈ Rn and 0 ≤ λ ≤ 1,
: (iii) u is upper semicontinuous,
: (iv) [u]0 = cl{x ∈ Rn : u(x) > 0} is compact.

If u ∈ En, then u is called a fuzzy number, and En is said to be a fuzzy number
space. For 0 < α ≤ 1, denote [u]α = {x ∈ Rn : u(x) ≥ 0}. Then from (i)-(iv), it follows
that the α-level set [u]α ∈ PK(Rn) for all 0 ≤ α ≤ 1.

If g : Rn × Rn → Rn is a function, then using Zadeh’s extension principle we can
extend g to En ×En → En by the equation

g̃(u, v)(z) = sup
z=g(x,y)

min{u(x), v(y)}.

It is well known that [g̃(u, v)]α = g([u]α, [v]α) for all u, v ∈ En, 0 ≤ α ≤ 1 and contin-
uous function g. Further, we have [u + v]α = [u]α + [v]α, [ku]α = k[u]α, where k ∈ R.
Define D : En × En → [0,∞) by the relation D(u, v) = sup

0≤α≤1
d([u]α, [v]α), where d is

the Hausdorff metric defined in PK(Rn). Then D is a metric in En.

Further we know that [7]
: (i) (En, D) is a complete metric space,
: (ii) D(u + w, v + w) = D(u, v) for all u, v, w ∈ En,
: (iii) D(λu, λv) = |λ|D(u, v) for all u, v ∈ En and λ ∈ R.

It can be proved that D(u + v, w + z) ≤ D(u, w) + D(v, z) for u, v, w and z ∈ En

Definition 2.1.[2] A mapping F : I → En is strongly measurable if for all α ∈ [0, 1] the
set-valued map Fα : I → PK(Rn) defined by Fα(t) = [F (t)]α is Lebesgue measurable
when PK(Rn) has the topology induced by the Hausdorff metric d.
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Definition 2.2.[2] A mapping F : I → En is said to be integrably bounded if there is
an integrable function h(t) such that ‖x(t)‖ ≤ h(t) for every x(t) ∈ F0(t).

Definition 2.3. The integral of a fuzzy mapping F : I → En is defined levelwise
by [

∫
I F (t)dt]α =

∫
I Fα(t)dt = The set of all

∫
I f(t)dt such that f : I → Rn is a mea-

surable selection for Fα for all α ∈ [0, 1].

Definition 2.4.[1] A strongly measurable and integrably bounded mapping F : I → En

is said to be integrable over I if
∫
I F (t)dt ∈ En.

Note that if F : I → En is strongly measurable and integrably bounded, then F is
integrable. Further if F : I → En is continuous, then it is integrable.

Proposition 2.1. Let F, G : I → En be integrable and c ∈ I, λ ∈ R. Then

: (i)
∫ t0+a

t0
F (t)dt =

∫ c

t0
F (t)dt +

∫ t0+a

c
F (t)dt;

: (ii)
∫

I
(F (t) + G(t))dt =

∫

I
F (t)dt +

∫

I
G(t)dt,

: (iii)
∫

I
λF (t)dt = λ

∫

I
F (t)dt,

: (iv) D(F,G) is integrable,

: (v) D

(∫

I
F (t)dt,

∫

I
G(t)dt

)
≤

∫

I
D(F (t), G(t))dt.

Definition 2.5 A mapping F : I → En is Hukuhara differentiable at t0 ∈ I if for some
h0 > 0 the Hukuhara differences

F (t0 + ∆t)−h F (t0), F (t0)−h F (t0 −∆t)

exist in En for all 0 < ∆t < h0 and there exists an F ′(t0) ∈ En such that

lim
∆t→0+

D((F (t0 + ∆t)−h F (t0))/∆t, F ′(t0)) = 0

and
lim

∆t→0+
D((F (t0)−h F (t0 −∆t)/∆t, F ′(t0)) = 0.

Here F ′(t) is called the Hukuhara derivative of F at t0.

Definition 2.6. A mapping F : I → En is called differentiable at a t0 ∈ I if, for
any α ∈ [0, 1], the set-valued mapping Fα(t) = [F (t)]α is Hukuhara differentiable at
point t0 with DFα(t0) and the family {DFα(t0) : α ∈ [0, 1]} define a fuzzy number
F (t0) ∈ En.

If F : I → En is differentiable at t0 ∈ I, then we say that F ′(t0) is the fuzzy deriva-
tive of F (t) at the point t0.
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Theorem 2.1. Let F : I → En be differentiable. Denote Fα(t) = [fα(t), gα(t)].
Then fα and gα are differentiable and [F ′(t)]α = [f ′α(t), g′α(t)].

Theorem 2.2. Let F : I → En be differentiable and assume that the derivative
F ′ is integrable over I. Then, for each s ∈ I, we have

F (s) = F (a) +
∫ s

a
F ′(t)dt.

Definition 2.7. A mapping f : I ×En → En is called levelwise continuous at a point
(t0, x0) ∈ I × En provided, for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists a
δ(ε, α) > 0 such that

d([f(t, x)]α, [f(t0, x0)]α) < ε

whenever |t− t0| < δ(ε, α) and d([x]α, [x0]α) < δ(ε, α) for all t ∈ I, x ∈ En.

Corollary 2.1 [2] Suppose that F : I → En is continuous. Then the function

G(t) =
∫ t

a
F (s)ds, t ∈ I

is differentiable and G′(t) = F (t).
Now, if F is continuously differentiable on I, then we have the following mean value
theorem

D(F (b), F (a)) ≤ (b− a) · sup{D(F ′(t), 0̂), t ∈ I}.
As a consequence, we have that

D(G(b), G(a)) ≤ (b− a) · sup{D(F (t), 0̂), t ∈ I}.
Theorem 2.3. Let X be a compact metric space and Y any metric space. A subset
Ω of the space C(X, Y ) of continuous mappings of X into Y is totally bounded in the
metric of uniform convergence if and only if Ω is equicontinuous on X, and Ω(x) =
{φ(x) : φ ∈ Ω} is a totally bounded subset of Y for each x ∈ X.

3. Main Results

Definition 3.1. A mapping x : J → En is a solution to the problem (1) if and only
if it is levelwise continuous and satisfies the integral equation

x(t) = x0 + g(t1, t2, · · · , tp, x(·)) +
∫ t

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds (2)

for all t ∈ J .
Let Y = {ξ ∈ En : H(ξ, x0) ≤ b} be the space of continuous functions with

H(ξ, ψ) = sup
0≤t≤γ

D(ξ(t), ψ(t)) and b is a positive number.

Theorem 3.1. Assume that:
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: (i) The mapping f : J × Y → En is levelwise continuous in t on J and there
exists a constant G0 such that

D(f(t, x1, x2, · · · , xn), f(t, y1, y2, · · · , yn)) ≤ G0

n∑

i=1

D(xi, yi)

: (ii) There exists a constant G1 such that for all x, y ∈ Y and σi : J → J, i =
1, 2, · · · , n

D(x(σi(t)), y(σi(t))) ≤ G1D(x(t), y(t))

: (iii) g : Jp× Y → En is a function and there exists a constant G2 > 0 such that

D(g(t1, t2, · · · , tp, x(·)), g(t1, t2, · · · , tp, y(·))) ≤ G2D(x, y).

Then there exists a unique solution x(t) of (1) defined on the interval [0, γ] where

γ = min{a, (b−N)/M, (1−G2)/G0G1},
M = maxD(f(t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂)) and

N = D(g(t1, t2, · · · , tp, x(·)), 0̂), 0̂ ∈ En.

Proof: Define an operator Φ : Y → Y by

Φx(t) = x0 + g(t1, t2, · · · , tp, x(·)) +
∫ t

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds.(3)

First, we show that Φ : Y → Y is continuous whenever ξ ∈ Y and that H(Φξ, x0) ≤ b.
Since f is levelwise continuous and σ is continuous, we take

M = maxD(f(t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂)

D(Φξ(t + h), Φξ(t))

= D

(
x0 + g(t1, t2, · · · , tp, ξ(·)) +

∫ t+h

0
f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds,

x0 + g(t1, t2, · · · , tp, ξ(·)) +
∫ t

0
f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

)

≤ D

(∫ t+h

0
f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds,

∫ t

0
f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

)

≤
∫ t+h

t
D(f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s))), 0̂)ds

= hM → 0 as h → 0.



86 K.BALACHANDRAN AND P.PRAKASH

That is, the map Φ is continuous. Now

D(Φξ(t), x0)

= D

(
x0 + g(t1, t2, · · · , tp, ξ(·)) +

∫ t

0
f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds, x0

)

≤ D(g(t1, t2, · · · , tp, ξ(·)), 0̂) +
∫ t

0
D(f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s))), 0̂)ds)

= N + Mt

and so

H(Φξ, x0) = sup
0≤t≤γ

D(Φξ(t), x0) ≤ N + Mγ ≤ b.

Thus Φ is a mapping from Y into Y . Since C([0, γ], En) is a complete metric space
with the metric H, we only show that Y is a closed subset of C([0, γ], En). Let {ψn}
be a sequence in Y such that ψn → ψ ∈ C([0, γ], En) as n →∞. Then

D(ψ(t), x0) ≤ D(ψ(t), ψn(t)) + D(ψn(t), x0),

that is,

H(ψ, x0) = sup
0≤t≤γ

D(ψ(t), x0) ≤ H(ψ, ψn) + H(ψn, x0)

≤ ε + b

for sufficiently large n and arbitrary ε > 0. So ψ ∈ Y . This implies that Y is closed
subset of C([0, γ], En). Therefore Y is a complete metric space.

By using Proposition 2.1 and assumptions (i),(ii) and (iii), we will show that Φ is a
contraction mapping. For ξ, ψ ∈ Y ,

D(Φξ(t), Φψ(t))

= D

(
x0 + g(t1, t2, · · · , tp, ξ(·)) +

∫ t

0
f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds,

x0 + g(t1, t2, · · · , tp, ψ(·)) +
∫ t

0
f(s, ψ(σ1(s)), ψ(σ2(s)), · · · , ψ(σn(s)))ds

)

≤ D(g(t1, t2, · · · , tp, ξ(·)), g(t1, t2, · · · , tp, ψ(·)))
+

∫ t

0
D(f(s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s))),

f(s, ψ(σ1(s)), ψ(σ2(s)), · · · , ψ(σn(s))))ds

≤ G2D(ξ(·), ψ(·)) +
∫ t

0
G0G1D(ξ(s), ψ(s))ds
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Then we obtain

H(Φξ,Φψ) ≤ sup
t∈γ

{
G2D(ξ(·), ψ(·)) +

∫ t

0
G0G1D(ξ(s), ψ(s))ds

}

≤ G2D(ξ(·), ψ(·)) + γG0G1D(ξ(t), ψ(t))
≤ (G2 + G0G1γ)H(ξ, ψ).

Since γG0G1 + G2 < 1, Φ is a contraction map. Therefore Φ has a unique fixed point
x ∈ C([0, γ], En) such that Φx = x, that is,

x(t) = x0 + g(t1, t2, · · · , tp, x(·)) +
∫ t

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds.

Theorem 3.2. Let f, σ and g be as in Theorem 3.1. Denote by x(t, x0), y(t, y0)
the solutions of equation (1) corresponding to x0, y0, respectively. Then there exists
constant q > 0 such that

H(x(·, x0), y(·, y0)) ≤ qD(x0, y0)

for any x0, y0 ∈ En and q = 1/(1−G2 − γG0G1).

Proof: Let x(t, x0), y(t, y0) be solutions of equations (1) corresponding to x0, y0, re-
spectively. Then

D(x(t, x0), y(t, y0))

= D

(
x0 + g(t1, t2, · · · , tp, x(·)) +

∫ t

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds,

y0 + g(t1, t2, · · · , tp, y(·)) +
∫ t

0
f(s, y(σ1(s)), y(σ2(s)), · · · , y(σn(s)))ds

)

≤ D(x0, y0) + D(g(t1, t2, · · · , tp, x(·)), g(t1, t2, · · · , tp, y(·)))
+

∫ t

0
D(f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s))),

f(s, y(σ1(s)), y(σ2(s)), · · · , y(σn(s))))ds

≤ D(x0, y0) + G2D(x(·), y(·)) +
∫ t

0
G0G1D(x(s), y(s))ds

Thus, H(x(·, x0), y(·, y0)) ≤ D(x0, y0) + (G2 + γG0G1)H(x(·, x0), y(·, y0)),
that is, H(x(·, x0), y(·, y0)) ≤ 1/(1−G2 − γG0G1)D(x0, y0).

This completes the proof of the theorem.

Next we generalize the above theorem for the fuzzy delay differential equation (1)
with nonlocal condition.

Theorem 3.3. Suppose that f : J ×En2 → En is level wise continuous and bounded,
σi : J → J (i = 1 · · ·n) are continuous and g : Jp × En → En is continuous. Then the
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initial value problem (1) possesses at least one solution on the interval J .

Proof: Since f is continuous and bounded and g is a continuous function there exists
r ≥ 0 such that

D(f(t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂) ≤ r, t ∈ J, x ∈ En.

Let B be a bounded set in C(J,En). The set ΦB = {Φx : x ∈ B} is totally bounded
if and only if it is equicontinuous and for every t ∈ J , the set ΦB(t) = {Φx(t) : t ∈ J}
is a totally bounded subset of En. For t0, t1 ∈ J with t0 ≤ t1, and x ∈ B we have that

D(Φx(t0), Φx(t1)) =

D

(
x0 + g(t1, t2, · · · , tp, x(·)) +

∫ t0

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds,

x0 + g(t1, t2, · · · , tp, x(·)) +
∫ t1

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

)

≤ D

(∫ t0

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds,

∫ t1

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

)

≤
∫ t1

t0
D(f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s))), 0̂)ds

≤ |t1 − t0| · sup{D(f(t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂) t ∈ J, }
≤ |t1 − t0| · r.

This shows that ΦB is equicontinuous. Now, for t ∈ J fixed. we have

D(Φx(t), Φx(t′)) ≤ |t− t′| · r, for every t′ ∈ J, x ∈ B.

Consequently, the set {Φx(t) : x ∈ B} is totally bounded in En. By Ascoli’s theorem
we conclude that ΦB is a relatively compact subset of C(J,En). Then Φ is compact,
that is, Φ transforms bounded sets into relatively compact sets.

We know that x ∈ C(J,En) is a solution of (1) if and only if x is a fixed point of the
operator Φ defined by (3).

Now, in the metric space (C(J,En),H), consider the ball

B = {ξ ∈ C(J,En), H(ξ, 0̂) ≤ m}, m = a · r.
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Thus, ΦB ⊂ B. Indeed, for x ∈ C(J,En),

D(Φx(t), Φx(0)) = D (x0 + g(t1, t2, · · · , tp, x(·))
+

∫ t

0
f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds,

x0 + g(t1, t2, · · · , tp, x(·)))
≤

∫ t

0
D(f(s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s))), 0̂)ds

≤ |t| · r ≤ a · r.
Therefore, defining 0̂ : J → En, 0̂(t) = 0̂, t ∈ J we have

H(Φx,Φ0̂) = sup{D(Φx(t), Φ0̂(t)) : t ∈ J}.
Therefore Φ is compact and, in consequence, it has a fixed point x ∈ B. This fixed

point is a solution of the initial value problem (1).
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