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A NOTE ON ENERGY MINIMIZING MAP

ON MANIFOLD WITH ISOLATED PEAKS

Heayong Shin

Abstract. In this paper, we consider some homogeneous maps from a cone over 2-
spheres and determines whether they become energy minimizing maps or not. In fact,
any homogeneous map from a standard cone over 2-sphere of radius smaller than 1 can
not be a minimizing harmonic map.

1. Introduction

There has been some efforts to extend the theory of harmonic maps to singular
spaces by several mathematicians. Korevaar & Schoen has developed sobolev theory
of maps from Riemannian domains into general complete metric spaces and have proved
the regularity of harmonic maps into nonpositively curved metric spaces. The similar
regularity result has also been proved by Jost independently. But when the domain is
not a Riemannian manifold, the harmonic map theory becomes more ambiguous. Jost
has defined the energy density of such a map with respect to a given measure on the
domain which satisfy certain conditions. But as far as the author knows, the minimum
structure of the domain where the theory of harmonic map can be properly considered
is not known.

When the domain is a smooth manifold with C∞ Riemannian metric given except
on some isolated points and the tangent cone at the singular points can be given,
the regularity of the minimizing harmonic map at those points can be examined by
considering the existence of homogeneous minimizing harmonic map on the target
cone. In this paper, we consider 3-dimensional cone over 2-spheres and will study some
conditions for which the homogeneous harmonic map is or is not minimizing.
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2. Homogeneous Minimizing Map in a Cone

Let S be a 2-dimensional topological sphere with a given metric ds2, and let
KS = O ∪ ((0, 1]×S) be a cone over S, with the metric given by dρ2 + ρ2ds2. For a
map h : S → N with finite Dirichlet energy we consider the homogeneous extension
h̃ : KS → N given by h̃(r, p) = h(p). When S is the standard unit sphere S2, KS

is the unit ball in R3 and the map h̃ is given by h̃(x) = h
(

x
|x|

)
. We will examine

some cases where h̃ can or can not be an energy minimizer.

Theorem 1. When S is the Euclidean sphere of radius k, k < 1, and N is a
Riemannian manifold diffeomorphic to a sphere, h̃(r, p) = h(p) : KS → N is not an
energy minimizing map unless h is a constant.

proof. If h̃ is an energy minimizing map, then h : S → N must be harmonic.
Therefore, we may assume that h is a conformal map from S into N. Consider S
as the unit sphere S2 with metric k2ds2, where ds2 is the standard metric in S2.
Then KS can be identified as the unit ball B3

1(0) with the metric.

Ψ = dr2 + k2r2dθ2 + k2r2 sin2 θdσ2,

for standard spherical coordinate r, θ, σ centered at the origin and z-axis as the
pole. In this coordinate, the Dirichlet energy E(h̃) of h̃ is given by

E(h̃) =
∫

KS

|∇h̃|2 =
∫

S

|∇h|2 = 2
∫ 2π

0

dσ

∫ π

0

dψ

∣∣∣∣
∂h

∂ψ

∣∣∣∣
2

N

.

Let 0 < a < 1 and A = (0, 0, a). We introduce another polar coordinate ρ, ϕ, σ
centered at A with the z-axis as the pole, so that ρ(x) = |x−A|, ψ(x) is the polar
angle and σ(x) is the azimuthal angle of x from A. Then between ρ, ϕ, σ and
r, θ, σ we have the following relations

ρ sin ϕ = r sin θ, ρ cos ϕ = r cos θ − a .

Let R(ϕ) denote the maximum allowed radius in B3 for given angle ϕ (i,e,
(R(ϕ), ϕ, σ) ∈ S2 ), and let ψ(ϕ) be the standard polar angle centered at the origin
of the point (R(ϕ), ϕ, σ).

We define ua(ρ, ϕ, σ) = h(ψ(ϕ), σ) with respect to the coordinate (ρ, ϕ, σ) in Kc

and the standard polar coordinate (ψ, σ) on S = S2.
In local coordinate (ρ, ϕ, σ), the energy density of ua can be computed as
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|∇ua|2N =
∣∣∣∣
∂ua

∂r

∣∣∣∣
2

N

+
1

k2r2

∣∣∣∣
∂ua

∂θ

∣∣∣∣
2

N

+
1

k2r2 sin2 θ

∣∣∣∣
∂ua

∂σ

∣∣∣∣
2

N

=
(∣∣∣∣

∂ϕ

∂r

∣∣∣∣
2

+
1

k2r2

∣∣∣∣
∂ϕ

∂θ

∣∣∣∣
2)∣∣∣∣

∂ua

∂ϕ

∣∣∣∣
2

N

+
1

k2r2 sin2 θ

∣∣∣∣
∂ua

∂σ

∣∣∣∣
2

N

and the volume element is

dV = k2ρ2 sin ϕ dρ dϕ dσ .

Here, | ∗ |N is the norm as vectors in N.
Since

∂ϕ

∂r
=

a sin ϕ

ρ
√

ρ2 + 2aρ cosϕ + a2
and

∂ϕ

∂θ
=

ρ + a cosϕ

ρ2
,

the energy of ua is

E(ua) =
∫ 2π

0

dσ

∫ π

0

dϕ

∫ R(ϕ)

0

dρ

{(
k2a2 sin2 ϕ + (ρ + a cos ϕ)2

ρ2 + 2aρ cos ϕ + a2

)
sin ϕ

∣∣∣∣
∂ua

∂ϕ

∣∣∣∣
2

N

+
1

sin ϕ

∣∣∣∣
∂ua

∂σ

∣∣∣∣
2

N

}

=
∫ 2π

0

dσ

∫ π

0

dϕ

∫ R(ϕ)

0

dρ

{
sin ϕ

∣∣∣∣
∂ua

∂ϕ

∣∣∣∣
2

N

+
1

sin ϕ

∣∣∣∣
∂ua

∂σ

∣∣∣∣
2

N

}

+ (k2 − 1)
∫ 2π

0

dσ

∫ π

0

dϕ

∫ R(ϕ)

0

dρ
a2 sin2 ϕ

ρ2 + 2aρ cos ϕ + a2
sin ϕ

∣∣∣∣
∂ua

∂ϕ

∣∣∣∣
2

N

= E1(ua) + E2(ua)

For E2(ua),

E2(ua) = (k2 − 1)
∫ 2π

0

dσ

∫ π

0

dϕ

∫ R

0

dρ
a2 sin2 ϕ

ρ2 + 2aρ cosϕ + a2
sin ϕ

∣∣∣∣
∂ua

∂ϕ

∣∣∣∣
2

N

= (k2 − 1)
∫ 2π

0

dσ

∫ π

0

dϕ

∫ R

0

dρ

{
a2 sin2 ϕ sin ϕ

ρ2 + 2aρ cos ϕ + a2

∣∣∣∣
∂ψ(ϕ)

∂ϕ

∣∣∣∣
2∣∣∣∣

∂h

∂ψ

∣∣∣∣
2

N

}

= (k2 − 1)
∫ 2π

0

dσ

∫ π

0

dϕ a sin2 ϕ

∣∣∣∣
∂ψ

∂ϕ

∣∣∣∣
2∣∣∣∣

∂h

∂ψ

∣∣∣∣
2

N

{
tan−1

(
R + a cos ϕ

a sin ϕ

)

− tan−1

(
cos ϕ

sinϕ

)}
.

Now, we change the parameter of the above integral by ψ.
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Since, R(ϕ) sin ϕ = sin ψ and R(ϕ) cos ϕ = cos ψ − a,

R2 = 1− 2a cosψ + a2 ,
∂ψ

∂ϕ
=

1− 2a cos ψ + a2

1− a cos ψ
.

Hence,

E2(ua) = (k2 − 1)
∫ 2π

0

dσ

∫ π

0

dψ
a sin2 ψ

(1− a cos ψ)

∣∣∣∣
∂h

∂ψ

∣∣∣∣
2

N

·
{

tan−1

(
1− a cos ψ

a sin ψ

)
− tan−1

(
cos ψ − a

sin ψ

)}
.

Therefore, E2(u0) = 0, and unless h is a constant,

d

da

∣∣∣∣
a=0+

E2(ua) = (k2 − 1)
∫ 2π

0

dσ

∫ π

0

dψ

∣∣∣∣
∂h

∂ψ

∣∣∣∣
2

N

sin2 ψ

(
π

2
− tan−1

(
cos ψ

sin ψ

))

< 0

By the same computation,

E1(ua) =
∫ 2π

0

dσ

∫ π

0

dψ

∣∣∣∣
∂h

∂ψ

∣∣∣∣
2

N

sinψ

(
(1− a cos ψ) +

1− 2a cos ψ + a2

1− a cosψ

)

So, E1(u0) = E(h̃) and by taking z-axis in opposite direction if necessary we may
assume that

d

da

∣∣∣∣
a=0

E1(ua) =
∫ 2π

0

dϕ

∫ π

0

dψ

∣∣∣∣
∂h

∂ψ

∣∣∣∣
2

N

sin ψ(−2 cos ψ) ≤ 0 .

Therefore, for sufficiently small a , we have E(ua) = E1(ua) + E2(ua) < E(h̃). This
proves that h̃ is not an energy minimizer. ¤

Theorem 2. Let S be the Euclidean sphere with radius k ≥ 1, and N be a
Riemannian manifold diffeomorphic to a sphere. Considering S = (S2, k2ds2) and
N = (S2, gds2) where S2 is the unit sphere and g2ds2 is the metric on N conformal
to that of S2, the map u(r, x) = x : KS → N is an energy minimizer if g satisfies

∫

s∈S2
(s · E) g2(s) dAS2(s) = 0
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for any unit vector E in Rn where s · E is the inner product in R3.

proof. As in Theorem 1, we may assume that KS = (B3
1 , ψ) where

ψ = dr2 + k2r2dθ2 + k2r2 sin2 θdσ and u(x) =
x

|x| ,

Let A be the set of mappings v ∈ W 1,2(B3
1 , S2) such that v = id on ∂B3

1 in the
sense of trace, and

Ã = {v ∈ W 1,2(B1, S1)| v is smooth except finite points, v|∂B1 = id }.

Then, Ã is a dense subset of A. [3] So we only need to show that E(u) ≤ E(v) for all
v ∈ Ã. For any v ∈ Ã, let S = {p1, p2, . . . , pk, n1, n2, . . . , nk−1} be the singularities
of v where the singular point of positive (negative) degree d are listed |d| times in
p1, · · · , pk(n1, · · · , nk−1). Then, for any s ∈ S2, v−1(s) contains a union of curves
joining ni to pσ(i) and s to pσ(k) for some permutation σ of {1, 2, . . . , k}. Then,
the 1-dimensional Hausdorff measure H1(v−1(s)) of the set v−1(s) ⊂ KS is

H1(v−1(s)) ≥ Σk−1
i=1 d(ni, pσ(i)) + d(s, pσ(k)).

Therefore,

H1(v−1(s)) ≥ min
σ

{ k−1∑

i=1

d(ni, pσ(i)) + d(s, pσ(k))
}

.

where the distance d is the distance in KS .
¿From the coarea formula,

∫

KS

|∇v|2NdV ≥ 2
∫

KS\S∪{0}
J(v)dV = 2

∫

N

H1(v−1(s))dAN (s) .

where J(v) is the absolute value of the determinant of dv restricted to the space
orthogonal to v−1(s) and dV, dA are volume elements of KS , N , respectively.
Hence,

∫

KS

|∇v|2NdV ≥ 2
∫

N

min
σ

{ k−1∑

i=1

d(ni, pσ(i)) + d(s, pσ(k))
}

dAN

= 2
∫

S2
min

σ

{ k−1∑

i=1

d(ni, pσ(i)) + d(s, pσ(k))
}

dµ(s) .
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where dµ = dAN is a positive measure on the unit sphere S2 in R3.
Now we will show that, for some X0 ∈ B3

1 ,

∫

S2
min

σ

{ k−1∑

i=1

d(ni, pσ(i)) + d(s, pσ(k))
}

dµ(s) ≥ min
x∈B3

∫

S2
d(s,X0)dµ(s) .

By approximation, we may assume that µ =
∑q

i=1 αiδbi
where αi ≥ 0,

∑
αi = 1,

and δbi
is the Dirac measure at bi ∈ S2. Then, the left side of the above inequality

becomes
q∑

l=1

{αl

k−1∑

i=1

d(ni, pσl(i)) + αld(bl, pσl(k))}

for some permutations σl of {1, 2, . . . , n}. Using the Birkhoff’s Theorem inductively
(in the exactly same way as in [2] Lemma 7.7 or [11] Lemma 5), we can show that the
above summation is bigger than or equal to

min
X0∈B3

q∑

l=1

αld(X0, bl) .

for some X0 ∈ N . Therefore,

E(v) ≥ 2 min
X0∈B3

∫

S2
d(s,X0)dµ(s) .

Now we consider
∫

S2 d(s,X0)dµ(s) =
∫

S2 d(s,X0)g2(s)dAS2(S) for some X0 ∈ B3.
By rotation, we may assume that X0 = (0, 0, l), −1 ≤ l ≤ 1, then from the construc-
tion of metric d of KS , we have

d(s,X0) =
√

sin2(kθ) + (cos kθ − l)2 , if θ ≤ π/k

and d(s,X0) = 1 + l if θ ≥ π/k , where θ is the polar angle of s. Since k ≥ 1,
d(s,X0) ≥ |s−X0| where | ∗ | is the standard norm in R3. Therefore,

∫

KS

|∇v|2dV ≥ 2 min
X0∈B3

∫

S2
d(s,X0)g2(s)dAS2 ≥ 2

∫

S2
|s−X0|g2(s)dAS2

and from the condition that
∫

S2

(
s · X0

|X0|
)

g2(s)dAS2(s) = 0 we have

2
∫

S2
|s−X0|g2(s)dAS2(s) ≥ 2

∫

S2
g2(s)dAS2(s) = E(u) .

This implies the minimizing property of the map u . ¤
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By the above theorems, we may have some informations about the existence of
minimizing tangent map at an isolated singularity (peak) of the domain when the
tangent cone at the peak is a cone over a standard sphere. When the tangent cone is a
cone over a sphere of radius smaller than 1, there doesn’t exist nonconstant minimizing
tangent map at the peak. On the contrary, where the tangent cone is a cone over a
sphere of radius ≥ 1, we may have singularity of minimizing harmonic map at the
peak. When the tangent cone is a cone over a general topological 2-sphere, it is not
known yet when a nonconstant minimizing tangent map can exist at such a point. The
answer to the above question would give crucial information about the regularity of
minimizing harmonic maps from singular spaces such as Alexandrove spaces.
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