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DECODING OF LEXICODES Sio4

D. G. Kim

Abstract. In this paper we propose a simple decoding algorithm for the 4-ary lexico-
graphic codes (or lexicodes) of length 10 with minimum distance 4, write S19,4. It is
based on the syndrome decoding method. That is, using a syndrome vector we detect an
error and it will be corrected an error from the four parity check equations.

1. Introduction

In this paper, we shall introduce the surprising arithemetical operations which are
used in the Game of Nim. Under these operations, the lexicodes are linear over some
finite field. Their definition is derived from a greedy algorithm, that is, each codeword
is chosen as the first word not prohibitively near to previous codewords.

The main aim of this paper is to find an decoding algorithm of the 4-ary [10, 6, 4]
lexicodes, write S19 4. Using a syndrome vector and the four parity check equations,
we correct one error in received vector.

This paper is arranged as follows. The nim operation is introduced in section 2,
the lexicodes with base 22" are discussed in section 3. In particular we obtain the six
basis of the 4-ary lexicodes S10,4. Section 4 gives a decoding algorithm and decoding
examples for this code.

2. Nim operation

First, we define the two operations which are called the nim-addition ¢ and nim-
multiplication ® in that game.
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Definition 1. Let 2’ be a variable that ranges over all elements strictly less than x and
mex the least non-negative integer not of the form. Then we define the two operations:
(1) a®b = mex{a &b, a®b'}

(2) a®b=mex{(d’ @b)S (a@V)® (d/ RV)}

Two operations, @ and ®, convert the numbers 0, 1, 2, - - - into a field of characteristic
2. Also, for a > 0, the numbers less than 22° form a subfield and isomorphic to the
Galois field GF(22").

Theorem 2 ([2]). The nim-operations turn the set of non-negative integers into a
field of characteristic 2.

Using the field laws, we shall fill out the first 4 by 4 corner of the addition and
multiplication tables in nim. Consider the nim-addition of any two numbers from
0,1,2,3.

Theorem 3 ([1]). We have x ®0=0® = = x, for every number x.

Since {0, 1,2, 3} is a field of characteristic 2, we have z @z = 0 for all x € {0, 1,2, 3}.
By Theorem 3, 1@ 2 can not be one of 0, 1,2 and so must be 3. Since 143 #0,1,3, it
must be 2. In the same way, we have 2 ® 3 = 1. Therefore the sum of any two distinct
numbers from 1,2, 3 is the third.

¢ 01 2 3
0 01 2 3
1 1 0 3 2
2 2 3 01
33 210

There is a nim-multiplication ® which together with nim-addition & converts the
integers into a field [2]. With nim-multiplication, we know that 0 ® x must be 0 which
is the zero of the field. Also 1® z must be x. Since the elements other than 0, 1 satisfy
2?2 = 2 @ 1 (here 22 means x ® z) in the field GF(4), we have 2®2 =2 @ 1 = 3 and
3®3=3®1=2. Next 2® 3 can not be one of 0,2,3 and so must be 1.

® 01 2 3
0 0 0 0 O
1 01 2 3
2 0 2 31
3 0 3 1 2

The following is a rule enabling us to perform nim-additions. In its statement, the
term 2-power means a power of 2, such as 1,2,4,8,---, in the ordinary sense:
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(i) If z is a 2-powers and y < x, then x By = = + y.
(i) r® 2z =0 for any =.

For example, 15&5=(8®4@2d1) (44 1) =84 2 = 10, since both 4’s and 1’s
are cancelled.

For finite numbers, the nim-multiplication follows from the following rules, similar
to those for nim-addition. In the following statement, the term Fermat 2-power means
the number 22", such as 2,4,16,256- - , in the ordinary sense:

(i) If = is a Fermat 2-powers and y < z, then t @ y = = X y.
(ii) z® 2 = 2 x z for any Fermat 2-power z.

For example 16®2 = 32, since 16 = 22°. By an equation (i), we have 22 = 2x 3 = 3,
42=4x3=6,162=16x 3 =24,--- .
Using the associative and distributive laws, 19 ® 11=(16 2@ 1) ® 8®2d 1) =
(1628)a(16R2)a (1601) & 208)e(2R2)e(201) @ (8626 1) =1286326 16
D(208)D208 = 128®3201604D2 =182, since 208 = 20 (4®2) = 482? = 483 = 8®4.
Next, we compute the inverse value 157! satisfying 15 ® 157! = 1. 15 ® 4= (8 @
106201)4=804) ¢ (404) & 204) e (104 =20404) 06086 4=
(2R6)D(402)®834=2® (4®2)) D268 =8®3®2®8 = 3®2=1. Hence 15! = 4.

3. Lexicodes

Consider the lexicodes with base B = 22°. A word of this codes is a sequence
X =327, x; € {0,1,---, 22" —1}. For a convenience, we omit leading zeros ( i.e.,
012 = 12). The set of words is ordered lexicographically, i.e., the word x = - - - x3z221
is smaller than the word y = - - - y3y2 41, written x <y, if for some n we have x,, < yn,
but zxy = yn for all N > n. For example, 123 < 132, 312 < 1032.

Lexicodes are defined by saying a word is in the code if it does not conflict with any
earlier codewords. That is, the lexicode with minimum distance d is defined by saying
that two words do not conflict if the Hamming distance between them is not less than
d. We write S, 4 for the lexicode consisting of the codewords with base 4, length n or
less and minimum distance d.

Example 1. Applying the greedy algorithm, then the lexicode S43 contains the
codewords, 0, 111, 222, 333, 1012, 1103, 1230, 1321, 2023, 2132, 2201, 2310, 3031,
3120, 3213, 3302.

In [3], Conway and Sloane show that the lexicode with base B = 2% is closed under
coordinatewise nim-addition, and if B = 22", the lexicode is closed under coordinate-
wise nim-multiplication by scalars k, k € {0,1,--- , 22" — 1}. As a result we provide
the following Lexicode Theorem.
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Theorem 4 ([3]). If B is of the form 22°, then the lexicode is a linear code over the
Galois field GF(B).

Now we consider the lexicodes Si04. Let e; be the basis of lexicode S1¢ 4. It is easily
checked that we have the first 3 bases e; = 1111, e; = 10123 and e3 = 100132. Since
S10,4 is a 6-dimensional vector space, this code has 6 bases. So we need to find the
basis ey, e; and eg of this code.

Theorem 5. For each i (3 <i<5), if ;1 is the smallest codeword with more digits
than e;, then e, = 11000011. Moreover we have e; = 101000023 and eg = 1001000032.

Proof. In [3, Table IV], 7 digit codewords are not possible. So we find the smallest
eight digit codeword. For k, a € {0,1,2,3}, 10aaaaaa is impossible for the same
reasons that 0laaaaaa is impossible. Also 11000000, 1100000a and 110000a0 conflict
with 00000000. So e4 may be 110000aa. Assume e4 = 11000011. If ¢ is a linear sum of
any two bases of e, ep and e3, then d(es, k®e;) = d(eyq, ¢) > 4,i=1,2,3, from the
last 2 places of e4, and at least 2 places of k ® e; and c.

If ¢ is a linear sum of e, e; and e, then d(e4, ¢) > 5 from the last 2 places of ey
and at least 3 places of c.

By the similar way, we can obtain the bases e5 and eg. [

4. Decoding Method

In this section, we shall obtain a 4 by 10 parity check matrix H using the 6 bases of
S10.4- For a given received vector r, this matrix H gives a syndrome vector s = r® HT
where HT is a transpose of H. If the syndrome is nonzero, this implies that an error
occurred in the received vector.

Let r be a received vector, r = 11 rg 78 77 16 T5 4 T3 T2 1. 1y (1 = 1,2,3,7)
is incorrect, these equations yield three Os and one nonzero, and respectively three
nonzeros and one 0 if r; (i = 4,5,6,8,9,10) is incorrect. In other cases, we conclude
that more than one error has been made. In particular, if the syndrome s is a multiple
of the ith column vector of H, then r; is not correct. Using the syndrome vector, we
can detect an errored coordinate in the received vector.

Now, all the arithmetic operations are in the nim-sense (nim-additon and nim-
multiplication). So we write z + y for @ y, and zy for z ® y.

Note : Let ¢ be a codeword, ¢ = ¢1g cg ¢cg ¢7 ¢g €5 €4 C3 C3 C1, C = Zle zr;e;,
x; €{0,1,2,3} Then we have ¢; = x1 + 3z + 2x3 + x4 + 325 + 226, c2 = 1 + 222 +
3x3 + x4 + 225 + 326, €3 =21 + 22+ T3, Ciyz = T; (Z = 1,2,3), C7T = T4 + X5 + Tg
and ¢;44 = x; (i =4,5,6). If r has no error, then the four parity check equations yield
0,0,0,0 as the following these :
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(1) T+ 719+ 718 +r7 =0
(2) re+rs+ra+r3=0
(3) 3rio+2rg+rs+3rg+2rs +r4+1r9=0
(4) 2r10+3r9g +rg +2rg +3r5s + 14 +1r1 =0

From the four parity check equations and a property of z & x = 0, we obtain a
coordinate c;, where ¢ = rg4+3r5+2rg+rs+3rg+2rig, co = rq+2r5+3rg+rs+2rg+3rio,
C3 =Tq4+7T5+76,C4 =73+7T5+7Tg, C5 =T3+14+7g,C6 =T3+74+75,Cr =78+79+710,
cg = T7+1r9 + 110, C9 = 17 + 18 + 110, C1g0 = 77 + T8 + r9. Therefore we can obtain a
desired codeword.

These the four equations give a parity check matrix H as the following this :

1111000000
H:0000111100
32103 21010
23102 31001

For example, let r = 3012221020 be a received vector. Then by nim-multiplication
of matrix, we have the syndrome rH? = (0, 1,2, 3). Since this vector is the 5th column
vector of H, the 5th coordinate of r is not correct. Therefore we obtan ¢ = r3+r4+re =
0+ 1+ 2 =3 and then have a desired codeword ¢ = 3012231020.

Now, we give a decoding algorithm of S1¢ 4.

Algorithm

Step 1 : First, we compute the syndrome vector s. If s is a multiple of the ith
column of H, we go to step 2.

Step 2 : Since r; is not correct, r; is replaced by ¢;.

Example 2. Let r = 1232012331. Since s = (2,0, 0, 0) is a multiple of the 7th column
vector of H, then r; is not correct. Hence c; = rg + 19+ 1190 =1+2+3 =0, and so
we get the desired codeword ¢ = 1230012331.

Example 3. Let r = 2131112202. Since s = (1,0, 3,2) is a multiple of the 10th column
vector of H, then rig is not correct. So we have c1g = 3r1 + 3rg +2r5 +rg +3rg +2rg =
1+14+24+1+2+2=3. Hence we get ¢ = 3131112202.
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Example 4. Let r = 3012221020. Since s = (0, 1,2, 3) is a multiple of the 5th column
vector of H, then rj is not correct, and so ¢5 = 3r1+2ry+r4+rg+rg = 0+3+1+14+0 = 3.
Therefore we get ¢ = 3012231020.

Example 5. Let r = 213313011. Since s = (0, 1,0,0) is a multiple of the 3th column
vector of H, then r3 is not correct. Hence we obtain c3 =rgy+7r5+r¢ =3+ 1+3 =1.
Therefore we get ¢ = 213313111.
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