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BEHAVIOR OF TWO-PREDECESSOR MULTIPLE ATTRACTOR
CELLULAR AUTOMATA

SUNG-JIN CHO AND UN-SOOK CHOI

Abstract. In this paper we analyze the behavior of linear multiple attractor cellular
automata having two-predecessors.

1. Introduction

Cellular automata(abbreviately, CA) have been introduced by Von Neumann and
Ulam as models of self-organizing and self-reproducing behaviors ([11], [14]). A CA is
a discrete time dynamical system, which consists of a uniform array of memories called
cells. The states of cells in the array are updated according to a rule : the state of a
cell at a given time depends only on its own state and the states of its nearby neigh-
bors at the previous step. A CA is a necessity in many application areas such as test
pattern generation, pseudorandom number generation, cryptography, error correcting
codes and signature analysis([1], [3], [7], [9], [12], [13]). The analysis of the state transi-
tion behavior of group CA was studied by many researchers ([1], [2], [4], [8]). Although
the study of nonsingular linear machines has received considerable attention from re-
searchers, the study of the class of machines with singular characteristic matrix has not
received due attention. The characteristic matrix of group CA is nonsingular. But the
characteristic matrix of nongroup CA is singular. Recently some interesting proper-
ties of nongroup CA have been employed in several applications([4],[5], [8], [10], [12]).
In this paper, we analyze the behavior of linear multiple attractor cellular automata
having two-predecessors.
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2. CA Preliminaries

A CA consists of a number of interconnected cells arranged spatially in a regular
manner [14], where the state-transitions of each cell depends on the states of its neigh-
bors. The CA structure investigated by Wolfram can be viewed as a discrete lattice
of sites (cells), where each cell can assume either the value 0 or 1. The next state of
a cell is assumed to depend on itself and on its two neighbors (3-neighbourhood de-
pendency). The cells evolve in discrete time steps according to some deterministic rule
that depends only on logical neighbourhood. In effect, each cell consists of a storage
element (D flip-flop) and a combinatorial logic implementing the next state function.

If the next-state function of a cell is expressed in the form of a truth table, then the
decimal equivalent of the output is conventionally called the rule number for the cell
[14].

Neighbourhood state : 111 110 101 100 011 010 001 000
Next state: 0 1 0 1 1 0 1 0 (rule 90)
Next state: 1 0 0 1 0 1 1 0 (rule 150)

The top row gives all eight possible states of the three neighboring cells (the left
neighbor of the ith cell, the ith cell itself, and its right neighbor) at the time instant t.
The second and third rows give the corresponding states of the ith cell at time instant
t + 1 for two illustrative CA rules. On minimization, the truth tables for the rules 60,
90, 102, 150, 204 and 240 result in the following logic functions, where ⊕ denotes XOR
logic and qi(t) denotes the state of the ith CA cell at the ith time instant, qi−1(t) and
qi+1(t) refer to the state of its left and right neighbors.

rule 60: qi(t + 1) = qi−1(t)⊕ qi(t)
rule 90: qi(t + 1) = qi−1(t)⊕ qi+1(t)
rule 102: qi(t + 1) = qi(t)⊕ qi+1(t)
rule 150: qi(t + 1) = qi−1(t)⊕ qi(t)⊕ qi+1(t)
rule 204: qi(t + 1) = qi(t)
rule 240: qi(t + 1) = qi−1(t)

Definition 2.1. [6] i) Linear CA: If the next-state generating logic employs only
XOR logic, then the CA is called an linear CA; otherwise it is called a non-linear CA.

ii) Group CA: A CA is called a group CA if all the states in its state-transition
diagram lie on cycles, otherwise it is referred to as a non-group CA.

iii) Reachable state: In the state-transition diagram of a non-group CA, a state having
at least one in-degree is called a reachable state, while a state with no in-degree is called
a non-reachable state.

iv) Attractor: A state having a self-loop is referred to as a attractor. An attractor
can be viewed as a cyclic state with unit cycle length.
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v) Depth: The maximum number of state transitions required to reach the nearest
cyclic state from any non-reachable state in the CA state-transition diagram is defined
as the depth of the non-group CA.

vi) Level and Predecessor: Level of a state Si is defined as the minimum number of
time steps required to reach a cyclic state starting from Si.

vii) Multiple-attractor CA(MACA): The non-group CA for which the state-transition
diagram consists of a set of disjoint components forming (inverted) tree-like structures
rooted at attractors are referred to as multiple-attractor CA.

viii) TPMACA: TPMACA is a MACA such that every reachable state in the state-
transition diagram has only two predecessors. TPSACA is a SACA such that every
reachable state in the state-transition diagram has only two predecessors. The rank of
T is n− 1 where T is the characteristic matrix of the TPSACA.

ix) α-tree: The tree rooted at a cyclic state α is called the α-tree.
Since the 0-tree and another tree rooted at a nonzero cyclic state have very interesting

relationships, the study of the 0-tree is necessary and very important.

Theorem 2.2. [5] The number of predecessors of a reachable state and the number
of predecessors of the state 0 in a linear nongroup CA are equal.

Fig. 1 displays the state-transition diagram of a TPMACA.

Figure 1. Structure and state-transition diagram of TPMACA
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3. Construction of Trees of Linear TPMACA

In this section, we present the method of more effective construction of trees in one
dimensional linear TPMACA by using the basic path in the 0-tree. First, we note

Lemma 3.1. [5] Let Xm and Xn be level i states in the α-tree of a TPMACA C. If
there exist j(≤ i) such that j = min{k|T kXm = T kXn}, then Xm ⊕Xn is one of level
j states in the 0-tree of C.

Corollary 3.2. The sum of different predecessors of any reachable state is a nonzero
predecessor of the state 0.

Theorem 3.3. Let C be a linear TPMACA. If the states of the state transition diagram
of C are labeled such that Sl,k be the (k+1)-th state in the l-th (l ≥ 2) level of the 0-tree
of C, then the following hold:
(1)

2l−1−1∑

k=0

Sl,k = 2l−1Sl,0 ⊕ 2l−2(S1,0 ⊕ S2,0 ⊕ · · · ⊕ Sl−1,0)

for all l(l ≤ depth) where kS denotes S ⊕ · · · ⊕ S(k summands).
(2) For each level l (l ≤ depth),

Sl,k = Sl,0 ⊕
l−1∑

i=1

biSi,0

where bl−1bl−2 · · · b1 is the binary representation of k and the maximum value of k is
2l−1 − 1.

Proof. (1) The proof will be by induction on l. For the case l = 1, the level 1 state is
only S1,0. For the case l = 2, since S2,0 ⊕ S2,1 = S1,0 by Lemma 3.1

1∑

k=0

S2,k = 2S2,0 ⊕ S1,0

Hence the statement is true for l = 2. Now as inductive hypothesis, assume that the
statement is true for l = m :

2m−1−1∑

k=0

Sm,k = 2m−1Sm,0 ⊕ 2m−2(S1,0 ⊕ S2,0 ⊕ · · · ⊕ Sm−1,0)

Note that the number of states at the level m of the 0-tree of C is 2m−1. If k is
an integer, 2r ≤ k ≤ 2r+1 − 1, then min{k|T kSm+1,k = T kSm+1,0} = r. Therefore
Sm+1,0⊕Sm+1,k (2r ≤ k ≤ 2r+1−1) is one of level r states in the 0-tree of C by Lemma
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3.1. Also

(Sm+1,0 ⊕ Sm+1,2r)⊕ (Sm+1,0 ⊕ Sm+1,2r+1)⊕ · · · ⊕ (Sm+1,0 ⊕ Sm+1,2r+1−1)
= (Sm+1,0 ⊕ · · · ⊕ Sm+1,0)⊕ (Sm+1,2r ⊕ Sm+1,2r+1 ⊕ · · · ⊕ Sm+1,2r+1−1)

(the number of Sm+1,0
′s is 2r)

= Sm+1,2r ⊕ Sm+1,2r+1 ⊕ · · · ⊕ Sm+1,2r+1−1

Hence

2m−1∑

k=0

Sm+1,k

= (Sm+1,0 ⊕ Sm+1,1)⊕ (Sm+1,2 ⊕ Sm+1,22−1)⊕ (Sm+1,22 ⊕ · · · ⊕ Sm+1,23−1)⊕ · · ·
⊕(Sm+1,2m−1 ⊕ · · · ⊕ Sm+1,2m−1)

= S1,0 ⊕ (S2,0 ⊕ S2,1)⊕ (S3,0 ⊕ S3,1 ⊕ · · · ⊕ S3,22−1)
⊕ · · · ⊕ (Sm,0 ⊕ Sm,1 ⊕ · · · ⊕ Sm,2m−1−1)

= S1,0 ⊕ {22−1S2,0 ⊕ 22−2S1,0} ⊕ {23−1S3,0 ⊕ 23−2(S1,0 ⊕ S2,0)}
⊕{24−1S4,0 ⊕ 24−2(S1,0 ⊕ S2,0 ⊕ S3,0)}
⊕ · · · ⊕ {2m−2Sm−1,0 ⊕ 2m−3(S1,0 ⊕ · · · ⊕ Sm−2,0)}
⊕{2m−1Sm,0 ⊕ 2m−2(S1,0 ⊕ S2,0 ⊕ · · · ⊕ Sm−1,0)}

= (1 + 22−2 + 23−2 + 24−2 + · · ·+ 2m−3 + 2m−2)S1,0

⊕(22−1 + 23−2 + 24−2 + · · ·+ 2m−3 + 2m−2)S2,0

⊕(23−1 + 24−2 + · · ·+ 2m−3 + 2m−2)S3,0 ⊕ · · ·
⊕(2(m−1)−1 + 2m−2)Sm−1,0 ⊕ 2m−1Sm,0

= (1 +
2m−1 − 1

2− 1
)S1,0 ⊕ (21 +

21(2m−2 − 1)
2− 1

)S2,0

⊕(23−1 +
22(2m−3 − 1)

2− 1
)S3,0 ⊕ · · · ⊕ (2m−2 + 2m−2)Sm−1,0 ⊕ 2m−1Sm,0

= 2m−1S1,0 ⊕ 2m−1S2,0 ⊕ · · · ⊕ 2m−1Sm,0

= 2m−1(S1,0 ⊕ · · · ⊕ Sm,0)

= 2mSm+1,0 ⊕ 2m−1(S1,0 ⊕ · · · ⊕ Sm,0) (because 2m is even)

Hence the statement is true for l = m + 1, to complete the induction.
(2) For the case level is l(l ≤ depth), the proof will be by induction on k that

Sl,k = Sl,0 ⊕
l−1∑

i=1

biSi,0 (0 ≤ k ≤ 2l−1 − 1)
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holds. For the case k = 1 since Sl,1 ⊕ Sl,0 = S1,0 by Lemma 3.1 Sl,1 = Sl,0 ⊕ S1,0.
Hence the statement is true for k = 1. Now as inductive hypothesis, assume that the
statement is true for k = n:

Sl,n = Sl,0 ⊕
l−1∑

i=1

biSi,0

Now consider the case k = n + 1.
(a) For the case n + 1 is odd:
Let bn

i be the i-th bit value in the binary representation of n. Since n is even, bn
1 = 0.

Also since n + 1 is odd, bn+1
1 = 1. Therefore bn+1

1 ⊕ bn
1 = 1. Also since n is even,

bn+1
j = bn

j for all j (2 ≤ j ≤ l − 1). Since TSl,n = TSl,n+1, T (Sl,n ⊕ Sl,n+1) = 0.
Therefore Sl,n ⊕ Sl,n+1 = S1,0. Thus

Sl,n+1 = Sl,n ⊕ S1,0

= (Sl,0 ⊕
l−1∑

i=1

bn
i Si,0)⊕ S1,0 (by inductive hypothesis)

= Sl,0 ⊕ bn
l−1Sl−1,0 ⊕ · · · ⊕ bn

2S2,0 ⊕ S1,0 (because bn
1 = 0)

= Sl,0 ⊕ bn+1
l−1 Sl−1,0 ⊕ · · · ⊕ bn+1

2 S2,0 ⊕ bn+1
1 S1,0

[because bn+1
1 = 0 and bn+1

j = bn
j for all j (2 ≤ j ≤ l − 1)]

= Sl,0 ⊕
l−1∑

i=1

bn+1
i Si,0

(b) For the case n + 1 is even:
If min{p | T pSl,n+1 = T pSl,n} = r, 2 ≤ r ≤ l − 1, then Sl,n+1 ⊕ Sl,n is one of level r
states in the 0-tree of C by Lemma 3.1. Also since

bn+1
i ⊕ bn

i =
{

1 if1 ≤ i ≤ r
0 ifr + 1 ≤ i ≤ l − 1
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, Sl,n+1 ⊕ Sl,n = Sr,2r−1−1. Thus

Sl,n+1 = Sl,n ⊕ Sr,2r−1−1

= (Sl,0 ⊕
l−1∑

i=1

bn
i Si,0)⊕ (Sr,0 ⊕

r−1∑

i=1

b2r−1−1
i Si,0) (by inductive hypothesis)

= (Sl,0 ⊕
l−1∑

i=1

bn
i Si,0)⊕ (Sr,0 ⊕ Sr−1,0 ⊕ · · · ⊕ S1,0)

= Sl,0 ⊕
r∑

i=1

(bn
i + 1)Si,0 ⊕

l−1∑

i=r+1

bn
i Si,0

= Sl,0 ⊕
r∑

i=1

bn+1
i Si,0 ⊕

l−1∑

i=r+1

bn+1
i Si,0 (∵ bn+1

i = bn
i for all i, r + 1 ≤ i ≤ l − 1)

= Sl,0 ⊕
l−1∑

i=1

bn+1
i Si,0

Hence by (a) and (b) the statement is true for k = n+1, to complete the induction. ¤

Remark 3.4. In Theorem 3.3 (1) if l = 2, then
∑2l−1−1

k=0 Sl,k = Sl,0. And if l > 2, then∑2l−1−1
k=0 Sl,k = 0.

Definition 3.5. Let C be a linear TPMACA and the depth of C be d. Let β be a
nonreachable state of the α-tree of C. Then we call the path

β → Tβ → · · · → T dβ(= α)

a α-basic path of the α-tree in C.

Remark 3.6. Let C be a linear TPMACA in Theorem 3.3 with depth d. Then

Sd,0 → Sd−1,0 → · · · → S1,0 → 0

is a 0-basic path of the 0-tree in C.

Lemma 3.7. Let C be a linear TPMACA. Let αi,j (resp. βi,j) be the (j + 1)-th state
in the i-th level of the α-tree (resp. β-tree) in C. Then

αi,j ⊕ βi,j = α⊕ β

Proof. Let Pi,j be the (j + 1)-th state in the i-th level of the 0-tree. Then by Theorem
4 [5] αi,j = Pi,j ⊕ α and βi,j = Pi,j ⊕ β.
Therefore

αi,j ⊕ βi,j = Pi,j ⊕ α⊕ Pi,j ⊕ β.
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Hence

αi,j ⊕ βi,j = α⊕ β.

¤

As a corollary we obtain the following result which is a α-basic path of the α-tree
using 0-basic path of the 0-tree in linear TPMACA.

Corollary 3.8. Let C be a linear TPMACA(depth = d) and T be the characteristic
matrix of C. If Sd,0 → Sd−1,0 → · · · → S1,0 → 0 is a 0-basic path of the 0-tree, then
(Sd,0 ⊕ α) → (Sd−1,0 ⊕ α) → · · · → (S1,0 ⊕ α) → α is a α-basic path of the α-tree of C.

Example 3.9. Let C be a five-cell linear nongroup CA with the rule < 204, 240, 240, 240, 240 >.
Then the characteristic matrix T is as the following.

T =




1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




The minimal polynomial m(x) of T is m(x) = x4(x + 1) and attractors are 0 and 31.
The state transition diagram is in Figure 1. (8-4-2-1-0) is a 0-basic path in the 0-tree.
The 31-basic path in the 31-tree corresponding to the 0-basic path is (23-27-29-30-31).

The following theorem is an extension of Theorem 3.3.

Theorem 3.10. Let C be a linear TPMACA with depth d. If the states of the state
transition diagram of C are labeled such that Sα

l,k(resp. Sl,k ) be the (k + 1)-th state in
the l-th level of the α-tree (resp. 0-tree) in C and Sα

l,k = Sl,0⊕α, then the following hold:

Sα
l,k = Sα

l,0 ⊕
l−1∑

i=1

biSi,0

where bl−1bl−2 · · · b1 is the binary representation of k and the maximum value of k is
2l−1 − 1.
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Figure 2. The state transition diagram of C

Proof. Since Sα
l,k = Sl,k ⊕ α by Lemma 3.7,

Sα
l,k = (Sl,0 ⊕

l−1∑

i=1

biSi,0)⊕ α by Theorem 3.3(2)

= (Sl,0 ⊕ α)⊕
l−1∑

i=1

biSi,0

= Sα
l,0 ⊕

l−1∑

i=1

biSi,0 by Lemma 3.7

¤
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