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ON DISTRIBUTIONS IN GENERALIZED CONTINUED FRACTIONS

YOUNG-HO AHN

Abstract. Let Tφ be a generalized Gauss transformation and [a1, a2, · · · ]Tφ be a
symbolic representation of x ∈ [0, 1) induced by Tφ, i.e., generalized continued fraction
expansion induced by Tφ. It is shown that the distribution of relative frequency
of [k1, · · · , kn] in [a1, a2, · · · ]Tp satisfies Central Limit Theorem where ki ∈ N for
1 ≤ i ≤ n.

1. Introduction

Let (X,B, µ) be a probability space. A transformation T : X → X is said to
be µ-preserving transformation if µ(T−1E) = µ(E). Sometimes we say that µ is T -
invariant measure. A transformations T is called ergodic if constant function is the
only T -invariant function and it is called weakly mixing if constant function is the only
eigenfunction. Ergodic Theorem says that if T is ergodic then

lim
n→∞

1
n

n−1∑

i=0

1E(T ix) = µ(E)

where E is a measurable subset of X and 1E is an indicator function of E. Now
consider the case X = [0, 1]. If µ is given by dµ = ρdx for ρ(x) ≥ 0 with

∫
X ρdx = 1

then µ(E) =
∫
E ρ dx and

∫
X fdµ =

∫
X fρ dx for every E and f ∈ L1(X, dx) where dx

is the Lebesgue measure on [0, 1]. In this case µ is said to be absolutely continuous and
ρ is called a density function. For more information on ergodic theory, see [5, 6].

In [3], Choe introduced the generalized Gauss transformations as follows. Let {x}
be the fractional part of x. Recall that a piecewise differentiable transformation T :
[0, 1] → [0, 1] is said to be eventually expansive if some iterate of T has its derivative
bounded away from 1 in modulus, i.e., |(Tn)′| > 1 everywhere for some n.

Definition 1. A transformation Tφ on the unit interval defined by Tφ(x) = {φ(x)} is
called a generalized Gauss transformation if φ(x) satisfies the following conditions.

(i) φ(x) is twice continuous differentiable,
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(ii) φ′(x) < 0 for every 0 < x < 1,
(iii) φ(0+) = +∞, and φ(1) = 1 and
(iv) T is eventually expansive.

For the notational convenience, if φ(x) = 1/xp, we denote Tφ as Tp.
Let x = .d1d2 · · · be the decimal expansion of 0 < x < 1. Since 10x = d1.d2d3 · · · ,

d1 = [10x] where [y] is the integral part of y. Hence the decimal expansion is closely
related to the transformation on the unit interval defined by Sx = {10x}, i.e., di =
[10(Si−1x)]. By using the properties of this transformation, it can be easily shown that
the relative frequency of 0 ≤ k ≤ 9 satisfies Central Limit Theorem [1].

The classical Gauss transformation on the unit interval is defined by T1(x) = {1/x}
with its invariant measure dµ =

1
ln 2

· 1
1 + x

dx. Since x = 1/([1/x] + T1(x)) and

T1(x) = 1/([1/T1(x)] + T 2
1 (x)), we have

x =
1

[1/x] +
1

(1/[T1(x)] + T 2
1 (x))

.

Similarly as in the case of decimal expansion of x, we obtain

x =
1

a1 +
1

a2 +
1

a3 +
1
· · ·

,

where a1 = [1/x], a2 = [1/T1(x)], and so on. Hence an(x) = a1(Tn−1
1 (x)). We write

x = [a0(x), a1(x), · · · ]T1 and say that [a0(x), a1(x), · · · ]T1 is a symbolic representation
of x induced by classical Gauss transformation and in general it is called the classical
continued fraction expansion of x. For k ∈ N, an(x) = k if and only if Tn−1

1 x ∈ ( 1
k+1 , 1

k ].
Thus the relative frequency of k in [a0, a1, · · · ]T1 , i.e.,

lim
n→∞

card{i; ai(x) = k}
n

= lim
n→∞

1
n

n−1∑

i=0

1( 1
k+1

, 1
k
](T

i
1x) = µ

(
1

k + 1
,
1
k

]

by applying Ergodic Theorem to Gauss transformation and an indicator function 1( 1
k+1

, 1
k
].

Similarly we have a symbolic representation [a0(x), a1(x), · · · ]Tφ
of x induced by a gen-

eralized Gauss transformation Tφ and they are called the generalized continued fraction
expansion of x and we obtain the similar result as above. For example, an(x) = k if

and only if Tn−1
p x ∈ ( p

√
1

k+1 , p

√
1
k ]. More precisely, consider the square-root continued

fractions which is induced by T2. Recall that

x =
1√

[1/x2] + T2x
.
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Since T2x =
1√

[1/(T2x)2] + T 2
2 x

, we have from the previous equation that

x =
1√

[1/x2] +
1√

[1/(T2x)2] + T 2
2 x

and so on. Continuing indefinitely, we obtain

x =
1√

a1 +
1√

a2 + · · ·
= [a1, a2, · · · ]T2

where a1(x) = [1/x2] and an(x) = [1/(Tn−1
2 x)2] = a1(Tn−1

2 x) for n ≥ 2.
In this article, we will consider the distribution of relative frequency of [k1, · · · , kn] in

the generalized continued fraction expansion [a1, a2, · · · ]Tφ
where ki ∈ N for 1 ≤ i ≤ n

and show that it satisfies Central Limit Theorem.

2. Densities of generalized Gauss transformations and
Central Limit Theorem

For piecewise differentiable maps on the unit interval the existence of absolutely
continuous invariant measure is proved under various similar conditions. In this article
we consider piecewise differentiable maps with infinitely many discontinuities. The
following folklore theorem guarantees the existence of absolutely continuous ergodic
invariant measures on the unit interval for some transformations with countably infinite
discontinuities [3].

Lemma 1 (Folklore Theorem). Let {∆i} be a countable partition of the unit interval
by subintervals ∆i with the property that the closure of the set of endpoints of ∆i has
zero Lebesgue measure. Suppose that an eventually expansive map T on the interval
[0, 1] satisfies

(i) T |∆i has a C2-extension to the closure of ∆i,
(ii) T |∆i is strictly monotone,
(iii) T (∆i) = [0, 1], and

(iv) supi

{
supx1∈∆i

|T ′′(x1)|/ infx2∈∆i |T ′(x2)|2
}

< ∞.

Then there exists a measure µ which is (a) T -invariant, (b) ergodic, and (c) finite
and of the form dµ = ρ(x)dx where ρ is continuous and 1/C < ρ < C for some C > 0.

As indicated in the introduction the relative frequency of k ∈ N in [a0(x), a1(x), · · · ]Tp

converges to
∫

1Pk
ρp(x) dx where Pk =

(
p

√
1

k+1 , p

√
1
k

]
and ρp(x) is the Tp-invariant

density function. It is a consequence of applying Ergodic Theorem to an indicator
function f(x) = 1Pk

(x).
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To investigate the distribution of relative frequency of [k1, · · · , kn] in [a1, a2, · · · ]Tφ

where ki ∈ N for 1 ≤ i ≤ n we need the following Lemma.

Lemma 2 (Central Limit Theorem). Let T be a transformation satisfying the condition
of Lemma 1, µ be the T -invariant absolutely continuous measure and f(x) be a bounded
variation function. Assume that the equation

f = C + ϕ ◦ T − ϕ

does not have a solution C ∈ R. Then

σ2 = lim
n→∞

∫ (
Snf − nµ(f)√

n

)2

dµ > 0

and, for any z ∈ R,

lim
n→∞µ

{
x :

Snf(x)− nµ(f)
σ
√

n
≤ z

}
=

1√
2π

∫ ∞

−∞
exp(−t2/2)dt,

where Snf(x) =
∑n−1

i=0 f(T ix) and µ(f) =
∫
X fdµ

Proof. For a proof, see [2]. ¤
Recall that a function g(x) is called a coboundary if the equation g(x)h(Tx) = h(x),

|h(x)| = 1 has a solution. If the equation f = C + ϕ ◦ T − ϕ has a solution, then

exp(2πif(x)) = exp(2πiC) exp(2πiϕ ◦ T (x))exp(2πiϕ(x)) (∗)
has a solution and g(x) = exp(2πiC) exp(2πif(x)) is a coboundary with cobounding
function h(x) = exp(2πiϕ(x)). Hence if f does not have a solution of (∗) then f does
not have a solution of the equation f = C + ϕ ◦ T − ϕ. Hence we can apply Central
Limit Theorem.

3. Distributions in generalized continued fractions

To investigate the applicability of Central Limit Theorem, we will study the solv-
ability of coboundary equation.

Let (Y, C, µ) be a probability space, f ∈ L1(Y, C, µ) and B ⊂ C a sub σ-algebra. Put
ν(B) =

∫
B f dµ for B ∈ B. Radon-Nikodym Theorem implies that there is a function

g ∈ L1(Y,B, µ) such that ν(B) =
∫
B g dµ for B ∈ B. We use the notation E(f |B) for g,

and call it the conditional expectation of f with respect to B. Let S be a transformation
defined on Y and B be exhaustive i.e., S−1B ⊂ B and SnB ↑ C as n → +∞.

Let B1 ⊂ B2 ⊂ · · · an increasing sequence of sub σ-algebra of C. A sequence
f1, f2, · · · of functions in L1(Y ) such that fn is measurable with respect to Bn for
n = 1, 2, · · · is called a martingale if E(fn+1|Bn) = fn a.e. for n = 1, 2, · · · . Mar-
tingale Theorem says that every L1-bounded martingale (i.e., supn

∫
Y |fn| dµ < ∞)

converges a.e. and in L1. Let Bn = SnB and fn = E(f |SnB). Then by the properties
of the conditional expectation operator, E(fn+1|Bn) = fn a.e. for n = 1, 2, · · · , i.e.,
E(f |SnB) is martingale with respect to the sequence of sub σ-algebra {SnB}. Since
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B is exhaustive, Martingale Theorem says that E(f |SnB) converges to f a.e. and in
L1(Y, C, µ) for f ∈ L1(Y, C, µ)

From now on, let T = {z ∈ C : |z| = 1}.
Lemma 3. Let S be a measure preserving transformation on (Y, C, µ), and B be an
exhaustive σ-algebra B ⊂ C, and let f : Y → T be a B-measurable map to the circle
group T. If q : Y → T is a C-measurable solution to the equation f · q ◦ S = q, then q
is B-measurable.

Proof. We follow the idea of Parry in [4]. Applying the conditional expectation operator
E(·|B) to the equation

f · q ◦ S = q (∗∗)
then

f · E(q ◦ S|B) = E(q|B)

or
f · E(q|SB) ◦ S = E(q|B).

Multiplying this with (∗∗) inverted we have

q(y) · E(q|B)(y) = q(Sy) · E(q|SB) ◦ S(y)

a.e. so that ∫

Y
q · E(q|B) dµ =

∫

Y
q · E(q|SB) dµ.

By exactly the same argument, using SnB in place of B, we have
∫

Y
q · E(q|SnB) dµ =

∫

Y
q · E(q|Sn+1B) dµ

so that ∫

Y
q · E(q|B) dµ =

∫

Y
q · E(q|SnB) dµ.

Taking limits, we get ∫

Y
q · E(q|B) dµ =

∫

Y
|q|2 dµ.

Thus E(q|B) = q a.e., and q is B-measurable. ¤

Proposition 1. Let Y =
∏∞
−∞{0, 1, 2, · · · } where σ be the shift map on Y with σ-

invariant measure µ. Let’s denote P = {Pk : Pk = {x : x0 = k} fork = 0, 1, 2, · · · },
i.e., P is a state partition and Bm

l =
∨m

i=l σ
−iP for l ≤ m . Assume that φ(x)

is T-valued Bm
l measurable function. If g(x) is a T-valued solution of the equation,

φ(x)g(σx) = g(x) then g(x) is also Bm
l measurable function.
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Proof. Let B =
∨∞

i=l σ
−iP. Then φ(x) is B measurable and B is exhaustive with respect

to σ. Since φ(x)g(σx) = g(x), g(x) is also B-measurable by the above Lemma. Now
let A =

∨∞
i=−m σiP. Then φ(σ−1x) is A measurable and A is exhaustive with respect

to σ−1. Since φ(x)g(σx) = g(x) can be rewritten as φ(σ−1x)g(x) = g(σ−1x), i.e.,
φ(σ−1x)g(σ−1x) = g(x), g(x) is also A measurable by applying the above Lemma to
the map σ−1. Hence the conclusion follows. ¤

For fixed generalized Gauss transformation Tφ, we have a collection of intervals {∆i}
satisfying the condition of Lemma 1, i.e., ∆i = (bi+1, bi] where {bi} is a decreasing
sequence of Tφ preimages of 1 with b1 = 1. Let {∆n

i } be a collection of intervals such
that A ∈ {∆n

i } if and only if A = Pi0 ∩ T−1
φ Pi1 ∩ · · · ∩ T−n+1

φ Pin−1 where Pik is taken
from {∆i} for all 0 ≤ k ≤ n− 1.

Given a generalized Gauss transformation Tφ, construct an one-sided shift space
on countable symbols as follows: To each x ∈ (0, 1] there corresponds a one-sided
infinite sequence [a0, a1, ..., an, ...] such that Tn

φ (x) ∈ ∆an if {Tn−1
φ x} 6= 0 and ai = 0

for all i ≥ n if {Tn−1
φ x} = 0 for n ≥ 1. For some t ∈ (0, 1], we can find N such

that its representation t = [a0, a1, ..., an, ...] satisfies the condition that an = 0 for all
n ≥ N . We call such a t as a generalized rational point. Let X be the set of all such
sequences and ψ be the assignment of a sequence to a point. Since Tφ has a finite
Lebesgue equivalent ergodic measure ρ(x) dx, we define a shift invariant measure ν on
a cylinder set C ⊂ ∏∞

0 {0, 1, 2, · · · , L} by ν(C) =
∫
ψ−1(C) ρ(x) dx. Note that ψ−1(C)

is a union of intervals with generalized rational endpoints. Kolmogorov Extension
Theorem guarantees the existence and uniqueness of such a measure ν. We call the
shift space X the symbolic system obtained from Tφ. Recall that two measure preserving
transformations T1 and T2 on X1 and X2 are said to be isomorphic if there exists a
measure preserving transformation ψ : X1 → X2 which is one-to-one and ψ◦T1 = T2◦ψ
on X1 modulo measure zero sets. Let σ be the one-sided shift transformation on X
defined by σ : [a0, a1, a2, ...] 7→ [a1, a2, a3, ...].

In the commutative diagram

([0, 1), ρ dx)
Tφ−−−−→ ([0, 1), ρ dx)

ψ

y ψ

y
(X, dν) σ−−−−→ (X, dν)

Tp and σ are isomorphic.
Let T : (X,B) → (X,B) be a measurable transformation. We define a natural

extension ST of T as follows: Let

XT = {(x0, x1, x2, · · · ) : xn = T (xn+1), xn ∈ X,n = 0, 1, 2, · · · },
and let ST : XT → XT be defined by

ST ((x0, x1, x2, · · · )) = (T (x0), x0, x1, x2, · · · ).
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ST is one to one on XT . If T preserves a measure µ, then we can define a measure µ
on XT by defining µ on the cylinder sets

C(A0, A1, · · · , Ak) = {(x0, x1, x2, · · · ) : x0 ∈ A0, x1 ∈ A1, · · · , xk ∈ Ak}
where Ai ∈ B for 0 ≤ i ≤ k as follows:

µ(C(A0, A1, · · · , Ak)) = µ(T−kA0 ∩ T−k+1A1 ∩ · · · ∩Ak).

Recall that if T preserves the measure µ, then ST preserves the measure µ. Furthermore
(T, µ) is ergodic if and only if (ST , µ) is ergodic and (T, µ) is weakly mixing if and only
if (ST , µ) is weakly mixing.

Now consider the case when X =
∏∞

k=0{0, 1, 2, · · · , L} where L ≤ ∞ and T is a shift
map, i.e.,

T ((x0, x1, x2, · · · )) = (x1, x2, x3, · · · ).
Then T is noninvertible. We will construct a natural extension of T . By the definition
of natural extension, we define

XT = {x = (y0, y1, y2, · · · ) : yi = (xi
0, x

i
1, x

i
2, · · · ), T (yi+1) = yi, yi ∈ X, i = 0, 1, · · · }.

By virtue of the condition T (yi+1) = yi, i = 0, 1, · · · , the sequence yi are of the form

y0 = (x0, x1, x2, · · · ),
y1 = (x−1, x0, x1, x2, · · · ),
y2 = (x−2, x−1, x0, x1, x2, · · · ),
...

yn = (x−n, x−n+1, · · · , x−1, x0, x1, x2, · · · ).
It is natural then to write the double sequence x = (y0, y1, y2, · · · ) as one two-sided
sequence:

x = (· · · , x−n, x−n+1, · · · , x−1, x0, x1, x2, · · · ).
Hence then natural extension of one-sided shift map is just a two-sided shift map.

Proposition 2. For fixed generalized Gauss transformation Tφ, let ∆i = (bi+1, bi] where
{bi} is a decreasing sequence of Tφ preimages of 1 with b1 = 1. Let {∆n

i } be a collection
of intervals such that A ∈ {∆n

i } if and only if A = Pi0 ∩ T−1
φ Pi1 ∩ · · · ∩ T−n+1

φ Pin−1

where Pik is taken from {∆i} for all 0 ≤ k ≤ n − 1. Assume that Bk be a finite
sequence of intervals taken from {∆n

i }. Then for generalized Gauss transformation
Tφ, a nonconstant function f(x) = exp(2πi

∑n
k=1 bk1Bk

(x)) is not coboundary. Hence
h(x) =

∑n
k=1 bk1Bk

(x) satisfies Central Limit Theorem.

Proof. Let ρφ be the Tφ-invariant density function. Let Y =
∏∞
−∞{0, 1, 2, · · · } and

Y + =
∏∞

0 {0, 1, 2, · · · }. For notational convenience, let T = Tφ. Consider the following
commutative diagram
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[0, 1) T−−−−→ [0, 1)

ψ

y
yψ

Y + σ+−−−−→ Y +

where (ψ(x))i = j if T ix ∈ ∆j for i = 0, 1, 2, · · · . Then ψ is a measure theoretically
isomorphism between ([0, 1), Tφ, ρφdx) and (Y +, σ+, ν+) where ν+ is a induced measure
by ψ and σ+ is the one-sided shift map on Y +. And (Y, σ, ν) is the natural extension of
(Y +, σ+, ν+) where σ is the two-sided shift map on Y . Hence if f(x)g(Tx) = g(x) then
g(x) is also step function and there exist an interval I taken from {∆m

i } for some m
such that g(x) is constant on I by Proposition 1. Since TmI = [0, 1) by the property of
T , f(x) is a function with finite discontinuity points, and f(x)g(Tx) = g(x), g(x) is also
a function with finite discontinuity points. Since f(x)g(Tx) = g(x) can be rewritten
as f(x) = g(x)g(Tx), f(x) must be a function with infinite discontinuity points. It is
a contradiction. ¤
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