DOI QR코드

DOI QR Code

In vitro Response of the MPO System of the Clam, Coelomactra antiquata with Exposure to Cytochrome P450 Inducers

Cytochrome P450 유도제에 노출시킨 명주조개 (Coelomactra antiquata) 약물대사효소계의 in vitro 반응

  • 전중균 (강릉대학교 해양생명공학부/동해안해양생물자원연구센터(EMBRC)) ;
  • 이미희 (강릉대학교 해양생명공학부/동해안해양생물자원연구센터(EMBRC)) ;
  • 심원준 (한국해양연구원 해양환경기후연구본부) ;
  • 이수형 (한국해양연구원 해양환경기후연구본부)
  • Published : 2002.03.01

Abstract

Induction of cytochrome P45O (CYP) and 7-etholqresorufin-O-deethylase (EROD) in the microsome exposed to 3-methylcholan-throne (MC), $\beta$-naphthoflavone (BNF) and phenobarbital-Na (PB) was investigated, Microsome was isolated from digestive gland of clam (Coelomactra antiquata) and then exposed to each chemical in concentration range of 0.1 to 1.0 mM for 7 hours. The CYP content and EROD activity in the microsome exposed to each chemical significantly increased compared to the control group. The overall CYP and EROD induction potency was in order of MC>BNF>PB. The induction response of EROD was two times higher than that of CYP level in the microsome exposed to MC, but the induction response of EROD was slightly higher than that of CYP level in BNF and PB exposure groups.

강원 북부 연안에 많은 명주조개 (Coelomactra antiquata)의 중장선으로 미크로좀을 만들고, cytochrome P45O (CYP)의 유도제로 알려진 phenobarbital (PB), 3-methylcholanthrene (MC) 및 $\beta$-naphthoflavone (BNF)을 DMSO에 녹여 함께 30$^{\circ}C$의 수조 상에서 in vitro로 배양하면서 약물대사효소계의 CYP 함량과 7-othoxyresorufin-O-deethylase (EROD) 활성의 변화를 경시적으로 조사하였다. 그리고 비교를 위한 sham구는 미크로좀에 DMSO만을 첨가하여 같은 조건으로 배양하였다. 그 결과, sham구의 CYP 함량은 배양 6시간이 지나서는 처음 수준의 $91\%$로 줄었으며, 0.1 mM과 0.2mM, 0.4mM 및 1.0 mM BNF 배양구는 배양 4$\~$6시간 후에 최대값이 되었는데 각각 처음 보다 $116\%$, $114\%$, $126\%$$132\%$로 되었다. PB와의 배양에서는 0.1 mM과 0.4 mM 및 1.0 mM 배양구는 배양 4$\~$6시간 후에 최대 값이 되었고 각각 처음의 $112\%$, $114\%$$114\%$로 되었으며, MC와의 배양에서도 0.1 mM과 0.4 mM 및 1.0 mM 배양구는 배양 4시간 후에 최대값이 되어 각각 $116\%$, $130\%$$132\%$로 증가하였다. 그리고 EROD 활성의 변화도 sham구는 배양 7시간 후에도 변화가 거의 없었으나, BNF의 0.1 mM과 0.4 mM 및 0.8 mM 배양구는 배양 7시간 후에 각각 처음의 $120\%$, $123\%$$115\%$로 되었고, PB의 0.1 mM과 1.0 mM 배양구는 배양 3시간 후에 최대로 되어 각각 $121\%$$136\%$로 증가하였으며, MC와의 배양에서는 0.1 mM과 0.4 mM 및 0.8 mM 배양구는 배양 5시간 후에 최대값이 되어 각각 $204\%$, $198\%$$191\%$로 증가하였다. 이처럼 BNF나 PB, MC는 명주조개에서도 미크로좀의 CYP 함량과 EROD 활성을 증가시키는 유도효과를 나타내었으며, 특히 MC에 의한 유도효과가 가장 강했고 BNF, PB의 순이었고, 대체로 약물의 농도가 높을수록 유도 효과도 큰 경향을 보였다.

Keywords

References

  1. Buhler, J.-L.W., X. Zhao, Y.-H. Yang, C.L. Miranda and D.R. Buhler.1997. Expression of a constitutive cytochrome P450 (CYP2K1) in livers of rainbow trout (Oncorhynchus mykiss) embryo and sacfry. Aquat. Toxicol., 37, 237-251 https://doi.org/10.1016/S0166-445X(96)00813-2
  2. Burke, M.D. and R.T. Mayer. 1974. Ethoxyresorufin: Direct fluorometric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methy1cho1anthrene. Drug Metab. Disp., 2, 583-588
  3. Cao, Z., J. Hong, R.E. Peterson and J.M. Aiken. 2000. Characterization of CYP1A1 and CYP1A3 gene expression in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol., 49, 101-109 https://doi.org/10.1016/S0166-445X(99)00072-7
  4. den Besten, P.J. 1998. Cytochrome P450 monooxygenase system inechinoderms. Comp. Biochem. Physiol., 121C, 139-146
  5. Elskus, A.A. and J.J. Stegeman. 1989. Further consideration of phenobarbital effects on cytochrome P-450 activity in the killifish, Fundulus heteroclitus. Comp. Biochem. Physiol., 92C, 223-230 https://doi.org/10.1016/0742-8413(89)90045-5
  6. Erickson, D.A., F.E. Laib and J.J. Lech. 1992. Biotransfonnation ofrotenone by hepatic microsomes following pretreatment of rainbow trout with inducers of cytochrome P450. Pestic. Biochem. Physiol., 42, 140-150 https://doi.org/10.1016/0048-3575(92)90061-4
  7. Gibson, G.G. and P. Skett. 1994. Introduction to Drug Metabolism.2nd ed. Blackie Academic & Professional. London, 296pp
  8. Harada, N. and T. Omura. 1981. Selective induction of two different molecular species of cytochrome P-450 by phenobarbital and3-methy1cho1anthrene. J. Biochem., 89, 237~248 https://doi.org/10.1093/oxfordjournals.jbchem.a133187
  9. Jaksic, Z., N. Bihari, W.E.G. Muller, R.K. Zahn and R. Batel. 1998. Modulation of cytochrome P450 1A in sea bass liver by model substances and seawater extracts. Aquat. Toxicol., 40, 265-273 https://doi.org/10.1016/S0166-445X(97)00052-0
  10. Kime, D.E. 1998. Disruption of liver function, In Endocrine Disiuption in Fish, D.E. Kime, ed. Kluwer Academic Publishers, Boston, pp. 201-246
  11. Lee, R.F. 1998. Annelid cytochrome P450. Comp. Biochem. Physiol., 121C, 173-179
  12. Lemaire, P., L. Forlin and D.R. Livingstone. 1996. Responses of hepatic biotransformation and antioxidant enzymes to CYP1Ainducers (3-methy1cho1anthrene, beta-naphthoflavone) in sea bass (Diceatrarchus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol., 36, 141-160 https://doi.org/10.1016/S0166-445X(96)00819-3
  13. Livingstone, D.R. 1991. Organic xenobiotic metabolism in marine invertebrates. In Advances in Comparative and Environmental Physiology, Vol. 7, R. Gilles, ed. Springer-Verlag, Berlin, pp. 45-185
  14. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement Folin phenol reagent. J. Biol. Chem., 193, 265-275
  15. Michel, X.R., P. Suteau, L.W. Robertson and J-F. Narbonne. 1993. EfFects of benzo (a)pyrene, 3,3'4,4'-tetrach1orobipheny] and 2,2'4,4',5,5'-hexach1orobipheny1 on the xenobiotic-metabolizing enzy-mes in the mussel (.Mytilus gallopi-ovinciafis). Aqua. Toxicol., 27,335-344 https://doi.org/10.1016/0166-445X(93)90062-6
  16. Ohhira, S., H. Matsui and K. Watanabe. 1999. Effects of pretreatment with cytochrome P450 inducers, especially phenobarbital ontriphenyltin metabolism and toxicity in hamsters, Toxicology, 137, 151-159 https://doi.org/10.1016/S0300-483X(99)00070-0
  17. Omura, T. and R. Sato. 1964. The carbon-monoxide binding pigment of liver microsomes. J. Biol. Chem., 239, 2370-2378
  18. Peters, L.D., C. Nasci and D.R. Livingstone. 1998. Variadon in levels of cytochrome P4501A, 2B, 2E, 3A and 4A-immunopositiveproteins in digestive gland of indigenous and transplanted mussel Mytilus galloprovincialis in Venice Lagoon, Italy. Mar. Environ. Res., 46, 295-299 https://doi.org/10.1016/S0141-1136(97)00117-7
  19. Sadar, M.D., R. Ash, J. Sundqvist, P-E. Olsson and T.B. Andersson 1996. Phenobarbital induction of CYP1A1 gene expression in a primary culture of rainbow trout hepatocytes. J. Biol. Chem., 271, 17635-17643 https://doi.org/10.1074/jbc.271.30.17635
  20. Scholz, S. and H. Segner. 1999. Induction of CYP1A in primary cultures of rainbow trout (Oacorhynchus mykiss) liver cells: Concentration-response relationships of four model substances. Ecotoxicol. Environ. Saf, 43, 252-260 https://doi.org/10.1006/eesa.1999.1786
  21. Ueng, T-H., Y-F. Ueng and S.S. Park. 1992. Comparative induction of cytochrome P-450-dependent monooxygenases in the livers and gills of tilapia and carp. Aquat. Toxicol., 23, 49-64 https://doi.org/10.1016/0166-445X(92)90011-B
  22. Waxman, D.J. and L. Azaroff, 1992. Review: Phenobarbital induction of cytochrome P450 gene expression. Biochem. J., 281, 577-592 https://doi.org/10.1042/bj2810577
  23. Wootton, A.N., C. Herring, J.A. Spry, A. Wiseman, D.R. Livingstone and P.S. Goldfarb. 1995. Evidence for the existence of cytochrome P450 gene families (CYP1A, 3A, 4A, 11A) and modulation of gene expression (CYP1A) in the mussel Mytilus spp. Mar. Environ: Res. 39, 21-26 https://doi.org/10.1016/0141-1136(94)00077-3