DOI QR코드

DOI QR Code

Limiting Nutrients for Phytoplankton Growth in the Seomjin River Estuary as Determined by Algal Bioassay Experiment

생물검정실험에 의한 섬진강 하구역 식물플랑크톤 성장의 제한영양염 평가

  • Kwon Kee Young (Department of Oceanography, Pukyong National University) ;
  • Kim Chang Hoon (Department of Aquaculture, Pukyong National University) ;
  • Kang Chang Keun (National Fisheries Research & Development Institute) ;
  • Moon Chang Ho (Department of Oceanography, Pukyong National University) ;
  • Park Mi Ok (Department of Oceanography, Pukyong National University) ;
  • Yang Sung Ryull (Division of Civil and Environmental Engineering, Kwangju University)
  • Published : 2002.09.01

Abstract

limiting nutrients for phytoplankton were determined by dissored inorganic nitrogen/phosphorous (DIN/DIP) in situ and algal bioassay experiment in the Seomjin River estuary during a study period from March 1999 to October 2001. DIN/DIP ranged from 14.7 to 681.1 during the study period. DIN/DIP was over 16 at the upper and middle estuarine region where salinity was lower than 25 psu and chlorophyll a concentration was high, probably indicating P-limitation in this region while the ratio was less than 16 at the high saline (> 25 psu) region, reflecting the supply of DIP from Gwangyang Bay and thereby indicating N-limitation at the lower estuarine region. These results suggested that the spatial distribution of DIN/DIP in the study region was controlled by the high supply of phosphate from Gwangyang Bay, the low input from Seomjin River and the active uptake by phytoplankton within the estuarine system. The bioassay experiments using Skeletonema costatum, Thalaasiosira rotula and in situ phytoplankton assemblage displayed relatively higher growth of phytoplankton in the P-added culture media, indicating P-limitation. This result was well consistent with the spatial distribution of inorganic nutrients. S. costatum showed a rapid adaptation to the low salinity compared to other phytoplankton species. This phenomenon seemed to account for the strong (> $90\%$ in total cell number) S. costatum bloom in autumn in this estuary. Moreover, although phytoplankton growth rate was higher in the P-added culture media at the end of culture experiment of in situ phytoplankton, the fast growth in the trace metal-added media at the beginning of the experiment suggested a possibility of limitation by other micro-nutrients such as trace metal and vitamin etc.

1999년 3월부터 2001년 10월까지 섬진강 하구역에서 영양염의 DIN/DIP 비와 생물검정실험을 이용하여 식물플랑크톤 성장을 제한하는 영양염을 파악$\cdot$비교하였다. 조사기간 동안 용존무기질소와 인산 인의 비는 평균 14.7$\~$681.1의 범위로, 조사시작 지점인 난초도 주변 해역을 제외한 25 psu 이하 염분역과 엽록소 a의 농도가 매우 높았던 구간에서는 계절에 관계없이 N/P 비가 16 이상으로 매우 높아 식물플랑크톤의 성장을 조절하는 제한 영양염은 인산 인인 것으로 판단된다. 반면, 약 25 psu 이상의 염분역인 난초도 주변 해역은 광양만으로부터 공급되는 인산 인의 영향으로 인해 DIN/DIP 비는 16 이하로 낮아, 용존무기질소가 식물플랑크톤의 성장을 제한하는 것으로 판단된다. 섬진강 하구역에서의 DIN/DIP 비의 변화양상은 인산 인의 공급양상, 즉 육상으로부터 의 낮은 공급 및 광양만으로 부터의 높은 공급 그리고 시$\cdot$공간적인 식물플랑크톤의 성장에 의해 주로 영향을 받는 것으로 판단된다. Skeletonema costatum 및 nalassiosira rotula와 현장 식물플랑크톤을 이용한 생물검정실험 결과는 인산 인이 첨가된 배지에서 성장이 상대적으로 높게 나타나, 섬진강 하구역에서 식물플랑크톤을 조절하는 제한영양염은 인산 인인 것으로 검증되었다. S. costatum은 타종에 비해 염분 적응이 빠르고, 인산 인에 대해 반응이 크게 나타나, 섬진강 하구역에서 가을철에 우점율 $90\%$ 이상의 costatum bloom이 발생되는 주요 원인이었을 것으로 추측된다 현장식물플랑크톤을 이용한 생물검정실험에서는 배양시작 초기에 미량금속 첨가계에서 비교적 빠른 성장을 보였으며, 20일 이후에 는 인산 인 첨가계에서 월등한 성장을 보였다. 이는 주변 해수의 영양염 분석과 식물플랑크톤 현존량만으로는 판단하기 어려운, 영양염 이외의 미량금속 그리고 비타민 등의 성장제한 요인에 대한 정보를 얻을 수 있다는 것을 시사해 준다.

Keywords

References

  1. Caraco, N., A. Tamse, 0. Boutros, I. Valiela. 1987. Nutnent limitation of phytoplankton growth in brackish coastal ponds. Can. J. Fish. Aquat Sci, 44, 473-476 https://doi.org/10.1139/f87-056
  2. Cloem, J.E. and R.T. Cheng. 1981. Simulation model of Skeletoaema costatum population dynamics in the northern San Francisco Bay estuary. Estuar, Coastal. Shelf ScL, 16, 415-429
  3. Cloem, J.E., A.E. Alpine, B.E. Cole, R.LJ. Wong, J.W. Wong, J.F. Arthur and M.D. Ball. 1983. River discharge controls phytoplankton dynamics in the Northem San Francisco Bay. Estuar. Coast Shelf Sci., 16, 415-429 https://doi.org/10.1016/0272-7714(83)90103-8
  4. D'Elia, C.F., J.G. Sanders and W.R. Boynton. 1986. Nutrient enhchment studies in a coastal plain estuary: Phytoplankton growth in large-scale, continuous cultures. Can. J. Fish. Aquat. Sci., 43, 397-406 https://doi.org/10.1139/f86-050
  5. Fisher, T.R., E.R. Peele, J.W. Ammennan and L. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82, 51-63 https://doi.org/10.3354/meps082051
  6. Goldman, J.C, JJ. McCarthy and D.G. Peavey. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279, 210- 215 https://doi.org/10.1038/279210a0
  7. Graneli, E. 1987. Nutrient limitation of phytoplankton biomass in a brackish water bay highly influenced by river discharge. Estuar. Coast. Shelf ScL, 25, 555-565 https://doi.org/10.1016/0272-7714(87)90114-4
  8. Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates, In Culture of Marine Invertebrate Animafs, W.L. Smith and M.H. Chanley, ed. Plenum, New York, PP. 29-60
  9. Hanison, PJ., H.H. Hu, Y.P. Yang and X. Lu. 1990. Phosphate limitation in estuarine and coastal waters of China. J. exp. mar. Biol. Ecol., 140, 79-87 https://doi.org/10.1016/0022-0981(90)90083-O
  10. Hecky, R.E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of environment. Limnol. Oceanogr., 33, 796-822 https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  11. Hitchcock, G.L. and TJ. Smayda. 1977. Bioassay of Lower Narragansett Bay waters during the 1972-1973 winter-spring bloom using the diatom Skeletonema costatum. Limnol. Oceanoer., 22, 132-139 https://doi.org/10.4319/lo.1977.22.1.0132
  12. Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. Syst., 19, 89-110 https://doi.org/10.1146/annurev.es.19.110188.000513
  13. Kang, C.K., J.B. Kim, J.B. Kim, P.Y. Lee and J.S. Hong. 2001. The importance of intertidal benthic autotrophs to the KwangyangBay (Korea) food webs:$\delta^{13}C$ analysis. J. Oceanol. Soc. Korea, 36, 109-123
  14. Kim, H.C., D.M. Kim, D.I. Lee, C.K. Park and H.G. Kim. 2001. Limiting nutrients of Cochtodinium polykrikoides red tide in Saryang Island coast by algal growth potential (AGP) assay. J. Kor. Fish. Soc., 34, 457-464 (in Korean)
  15. Kim, TJ. 1992. Sorption behaviour of radium isotopes and nutrientfluxes in the Seomjin estuary of Korea, during high river discharge. Master thesis, Chungnam National University, Taejon, 59pp.
  16. Kwon, K.Y., P.G. Lee, C. Park, C.H. Moon and M.O. Park. 2001a. Biomass and species composition of phytoplankton and zooplankton along the salinity gradients in the Seomjin Riverestuary. J. Oceanogr. Soc. Korea, 6, 93-102 (in Korean)
  17. Kwon, K.Y., C.H. Moon and H.S. Yang. 2001b. Behavior of nutrients along the salinity gradients in the Seomjin River estuary. J. Korean Fish. Soc., 34, 199-206 (in Korean)
  18. Kwon, K.Y., C.H. Moon, C.K. Kang and Y.N. Kim. 2002. Distribution of paniculate organic matters along the salinity gradients in the Seomjin River estuaiy. J. Kor. Fish. Soc., 35, 86-96 (in Korean)
  19. Lee, Y.S., T. Mukai, K. Taldmoto and M. Okada. 1996a. Estimation of limiting nutrient by algal assay procedure with indigenous phytoplankton assemblage. Jpn. Soc. Water Environ., 19, 373-380 https://doi.org/10.2965/jswe.19.373
  20. Lee, Y.S., T. Yamada, T. Seiki, T. Mukai, K. Takimoto and M, Okada. 1996b. Effect of freshwater due to heavy rain on phytoplankton growth in Hiroshima Bay. Jpn, Soc. Water Environ., 19, 995-1003 https://doi.org/10.2965/jswe.19.995
  21. Lee, Y.S. 1997. Mechanism eutrophication in Hiroshima Bay, Japan. J. of KSEE, 19, 371-380 (in Korean)
  22. Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, WJ. Go, K.Y. Kim and J. Park. 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. Oceanol. Soc. Korea, 6, 201-210 (in Korean)
  23. Mahoney, J.B. 1989. Algal assay of relative abundance of phyto-plankton nutrients in northeast United States coastal and shelfwaters. WaL Res., 23, 603-615
  24. McCarthy, JJ. 1980. Nitrogen, In The Physiological Ecology of Phytoplankton, I. Morris, ed. University of California Press, Berkeley,CA., pp.199-233
  25. Nalewajko, C. and D.R.S. Lean. 1980. Phosphorus, In The Physiological Ecology of Phytoplankton, I. Morris, ed. University of California Press, Berkeley, CA., pp. 235-258
  26. Park, M.O., C.H. Moon, S.Y. Kim, S.R. Yang, K.Y. Kwon and Y.W. Lee. 2001. The species composition of phytoplankton along the salinity gradients in the Seomjin River estuary in Autumn, 2000: Comparison of HPLC analysis and microscopic observations. Algae, 16, 179-188 (in Korean)
  27. Round, F.E., R.M. Crawford and D.G. Mann. 1990. The Diatoms. Cambridge University Press, Cambridge, 140pp
  28. Roy, S., J.P. Chanut, M. Gosselin and T.S. Ngando. 1996. Characteri, zation of phytoplankton communities in the lower St. Lawrence, Estuaiy using HPLC-detected pigments and cell microscopy, Mar. Ecol. Prog. Ser., 142, 55-73 https://doi.org/10.3354/meps142055
  29. Schihdler, D.W. 1977. Evolution of phosphorus limitation in lakes. Science, 195, 260-262 https://doi.org/10.1126/science.195.4275.260
  30. Smayda, TJ. 1974. Bioassay of the growth potential of the surface water of lower Narragansett Bay over an annual cycle using the diatom Thalassiosira pseudonana (oceanic clone, 13-1). Limnol. Oceanogr., 19, 889-901 https://doi.org/10.4319/lo.1974.19.6.0889
  31. Smith, S.M. and G.L. Hitchcock. 1994. Nutrient enrichments and phytoplankton growth in the surface waters of the Louisiana Bight Estuaries, 17, 740-753
  32. Stnckland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Bull. Fish. Res. Board Can. 167, 310pp
  33. Twinch, AJ. and C.M. Breen. 1982. A comparison of nutrient availability measured by chemical analysis and calculated from bioassay yields. Hydrobiologia, 94, 247-255 https://doi.org/10.1007/BF00016406
  34. Webb, K.L. 1988. Comment on 'Nutnent limitation of phytoplankton growth in brackish coastal ponds' by Caraco, Tamse, Boutros and Valiela, 1987. Can. J. Fish. Aquat. Sci., 45, 380 https://doi.org/10.1139/f88-045

Cited by

  1. Factors Controlling Temporal-Spatial Variations of Marine Environment in the Seomjin River Estuary Through 25-hour Continuous Monitoring vol.15, pp.4, 2012, https://doi.org/10.7846/JKOSMEE.2012.15.4.314
  2. The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea vol.19, pp.1, 2014, https://doi.org/10.7850/jkso.2014.19.1.53
  3. Distribution and seasonal variations of fisheries resources captured by the beam trawl in Namhae island, Korea vol.49, pp.4, 2013, https://doi.org/10.3796/KSFT.2013.49.4.419
  4. 아산만 식물플랑크톤의 계절별 군집 분포 특성 vol.27, pp.2, 2002, https://doi.org/10.4217/opr.2005.27.2.149
  5. 가을철 광양만 식물플랑크톤의 수평 분포와 추가 영양염 공급이 식물플랑크톤 성장에 미치는 영향 vol.32, pp.1, 2014, https://doi.org/10.11626/kjeb.2014.32.1.035