DOI QR코드

DOI QR Code

Production of Phagocyte Activating Supernatants by Olive Flounder (Paralichthys olivaceus) Leucocytes Stimulated with Genomic DNA of Escherichia coli

  • Lee Chan Hwei (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim Dong Soo (Department of Aquaculture, Pukyong National University) ;
  • Kim Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • Published : 2002.12.01

Abstract

Effects of Escherichia coli genomic DNA on the production of phagocyte activating supernatants by the head kidney leucocytes isolated from olive flounder (Paralichthys olivaceus) were investigated. Phagocyte activating activity of the supernatants was estimated by. measuring reactive oxygen species (ROS) production in target head kidney phagocytes. All supernatants from olive flounder head kidney leucocytes-stimulated with E. coli DNA induced significantly (P<0.01) higher ROS production from target pagocytes than the unstimulated control supernatant. Maximum enhancement of chemiluminescent response was observed $5.0-10.0{\mu}g\;mL^{-1}$ of bacterial DNA while the increment ability was decreased significantly (P<0.01) at the concentration of $20.0{\mu}mL^{-1}$. The results demonstrate that olive flounder head-kidney leucocytes stimulated with bacterial DNA release a soluble phagocyte activating cytokines capable of enhancing the respiratory burst activity from target phagocytes.

Keywords

References

  1. Bird, A.P. 1980. DNA methylation and the frequency of CpG in animal DNA Nuc. Acids Res., 8, 1499-1504 https://doi.org/10.1093/nar/8.7.1499
  2. Bird, A.P. 1987. CpG islands as gene markers in the vertebrate nucleus. Trends Genet., 3, 342-346 https://doi.org/10.1016/0168-9525(87)90294-0
  3. Birren, B., E.D. Green, S. Klapholz, R.M. Myers and J. Roskams, 1997. Genome analysis: A laboratory manual Vol. 1. Cold Spring Harbor Laboratory Press, New York, 675pp
  4. Chase, J.H., N.A. Hooker, K.L. Mildenstein, A.M. Krieg and J.S. Cowdery, 1997. Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of L-12. Clin. Immunol. Immunopathol., 84, 185-193 https://doi.org/10.1006/clin.1997.4380
  5. Chung, S. and C.J. Secombes. 1987. Activation of rainbow trout macrophages. J. Fish Biol., 31 (Suppl. A), 51-56 https://doi.org/10.1111/j.1095-8649.1987.tb05292.x
  6. Graham, S. and C.J. Secombes. 1990a. Cellular requirements for lymphokine secretion by rainbow trout Salmo gairdneri leucocytes. Dev. Comp. Immunol., 14, 59-68 https://doi.org/10.1016/0145-305X(90)90008-3
  7. Graham, S. and C.J. Secombes. 1990b. Do fish lymphocytes secrete interferon-$\gamma$. J. Fish Biol., 36, 563-573 https://doi.org/10.1111/j.1095-8649.1990.tb03557.x
  8. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda and S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740-745 https://doi.org/10.1038/35047123
  9. $J\phirgensen,$ J.B., A Johansen, B. Stenersen and A.-I. Sommer. 2001a. CpG oligodeoxynucleotides and plasmid DNA stimulates Atlantic salmon leucocytes to produce supernatants with antiviral activity. Dev. Compo Immunol., 25, 313-321 https://doi.org/10.1016/S0145-305X(00)00068-9
  10. $J\phirgensen,$ J.E., J. Zou, A Johansen and CJ. Secombes. 2001b. Immunostimulatory CpG oligodeoxynucleotides stimulate expression of IL-1$\beta$ and interferon like cytokines in rainbow trout macrophages via a chloroquine sensitive mechanism. Fish Shellfish Immunol., 11, 673-682 https://doi.org/10.1006/fsim.2001.0344
  11. Kanellos, T.S., I.D. Sylvester, V.L. Butler, A.G. Ambali, C.D. Partidos, A.S. Hamblin and P.H. Russell. 1999. Mammalian granulocyte-macrophage colony-stimulating factor and some CpG motifs have an effect on the immunogenicity of DNA and subunit vaccines in fish. Immunol., 96, 507-510 https://doi.org/10.1046/j.1365-2567.1999.00771.x
  12. Klinman, D.M., A.-K. Yi, S.L. Beaucage, J. Conover and A.M. Krieg. 1996. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon $\gamma$. Proc. Natl. Acad. Sci., 93, 2879-2883 https://doi.org/10.1073/pnas.93.7.2879
  13. Krieg, A.M., A.-K Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, G.A. Koretzky and D.M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 374, 546-549 https://doi.org/10.1038/374546a0
  14. Krieg, A.M., G. Hartmann and A.-K. Yi. 2000. Mechanism of action of CpG DNA. Curr. Top. Microbiol. Immunol., 247, 1-21
  15. Lipford, G.B., M. Bauer, C. Blank, R. Reiter, H. Wagner and K. Heeg. 1997. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur. J. Immunol., 27, 2340-2344 https://doi.org/10.1002/eji.1830270931
  16. Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin and R.L. Coffman. 1986. Two types of helper T cell clone: definition according to profiles of lymphokine activities and secreted proteins. J. Immunol., 136, 2348-2357
  17. Mulero, V. and J. Meseguer. 1998. Functional characterization of a macrophage-activating factor produced by leucocytes of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 8, 143-156 https://doi.org/10.1006/fsim.1997.0127
  18. Murray, H.W. 1988. Interferon-gamma, the activated macrophage, and host defense against microbial challenge. Ann. Intern. Med., 198, 595-608
  19. Nathan, C.F., H.W. Murray, M.E. Weibe and B.Y. Rubin. 1983. Identification of interferon-y as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med., 158, 670-689 https://doi.org/10.1084/jem.158.3.670
  20. Oumouna, M., L. Jaso-Friedmann and D.L. Evans. 2002. Activation of nonspecific cytotoxic cells (NCC) with synthetic oligodeoxynucleotides and bacterial genomic DNA: Binding, specificity and identification of unique immunostimulatory motifs. Dev. Compo Immunol., 26, 257-269 https://doi.org/10.1016/S0145-305X(01)00068-4
  21. Scott, A.L. and P.H. Klesius. 1981. Chemiluminescence: A novel analysis of phagocytosis in fish. Develop. BioI. Standard., 49, 243-254
  22. Secombes, C.J. 1987. Lymphokine-release from rainbow trout leucocytes stimulated with concanavalin A: effects upon macrophage spreading and adherence. Dev. Compo Immunol., 11, 513-520 https://doi.org/10.1016/0145-305X(87)90040-1
  23. Secombes, C.J. 1990. Isolation of salmonid macrophages and analysis of their killing acnvity. In Techniques in fish immunology, Vol. 1, J.S. Stolen, T.C. Fletcher, D.P. Anderson, B.S. Roberson and W.B. van Muiswinkel, ed. SOS Publications, pp. 137-154
  24. Stacey, K.J., M.J. Sweet and D.A. Hume. 1996. Macrophages ingest and are activated by bacterial DNA. J. Immunol., 157, 2116-2122