Ti-51.5at.%Ni 형상기억합금 단결정의 소성변형 거동

Plastic Deformation Behavior of Ti-51.5at.%Ni Shape Memory Alloy Single Crystals

  • 전중환 (연세대 준결정재료연구단) ;
  • Jun, Joong-Hwan (Center for Noncrystalline Materials, Department of metallurgical Engineering, Yonsei University) ;
  • Sehitoglu, Huseyin (Department of mechanical and Industrial Engineering, University of Illionois)
  • 투고 : 2001.09.28
  • 발행 : 2002.01.30

초록

Deformation behavior of nickel-rich Ti-51.5at.%Ni single crystals was investigated over a wide range of temperatures(77 to 440K) and strain levels(up to 9%) in compression. These alloys combined superior strength with wide range of pseudoelasticity temperature interval(~200K). The slip deformation in [001] orientation did not occur due to the prevailing slip system, and consequently, exhibited pseudoelastic deformation at temperatures ranging from 77 to 283K and 273 to 440K for the solutionized and over-aged cases, respectively. The critical transformation stress levels were in the range of 800 to 1800MPa for the solutionized case, and 200 to 1000MPa for the over-aged case depending on the temperature and specimen orientation. These stress levels are considerably higher compared to these class of alloys having lower Ni contents. The maximum transformation strains, measured from incremental straining experiments in compression, were lower compared to the phenomenological theory with Type II twinning. A compound twinning model depending on the successive austenite(B2) to intermediate phase(R) to martensite(B19') transformation predicts lower transformation strains compared to the Type II twinning case.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. K Gall, H. Sehitoglu, Y. Chumlyakov and I. Kireeva, Acta Mater., 47 (1999) 1203 https://doi.org/10.1016/S1359-6454(98)00432-7
  2. K Otsuka, T. Sawamura and K Shimizu,, Phys. Stat. Sol., 5 (1971) 457 https://doi.org/10.1002/pssa.2210050220
  3. S. Miyazaki and C.M. Wayman, Acta Metall., 36 (1988) 181 https://doi.org/10.1016/0001-6160(88)90037-5
  4. S. Miyazaki, S. Kimura and K. Otsuka, Phil. Mag. A, 57 (1988) 467 https://doi.org/10.1080/01418618808204680
  5. S. Miyazaki, Y. Ohmi, K Otsuka and Y. Suzuki, J. de Phys., 43 (1982) C4-255
  6. T.Saburi and S. Nenno, J. de Phys., 43 (1982) C4-261
  7. H. Sehitoglu, J.H. jun, X.Y. Zhang, I. Karaman, Y. Chumlyakov, H. Maier and K Gall, Submitted to Acta Materialia
  8. H. Sehitoglu, I. Karaman, R. Anderson, X.Y. Zhang, K. Gall, H. Maier and Y. Chumlyakov, Acta Mater., 48 (2000) 3311 https://doi.org/10.1016/S1359-6454(00)00153-1
  9. M. Nishida, C.M. Wayman and A. Chiba, Metallography, 21 (1988) 275 https://doi.org/10.1016/0026-0800(88)90025-0
  10. M. Nishida, H. Ohgi, I. Itai, A. Chiba and K. Yamauchi, Acta Mater., 43 (1995) 1219 https://doi.org/10.1016/0956-7151(94)00332-C
  11. M. Krishinan and J.B. Singh, Acta Mater., 48 (2000) 1325 https://doi.org/10.1016/S1359-6454(99)00423-1
  12. N.S. Surikova and Y. Chumlyakov, Phys. Metal. Metallogr., 89 (2000) 196
  13. K.M. Knowles and D.A. Smith, Acta Metall., 29 (1981) 101 https://doi.org/10.1016/0001-6160(81)90091-2
  14. J,M. Ball and R.D. James, Arch. Rat. Mech. Anal., 100 (1987) 13 https://doi.org/10.1007/BF00281246
  15. T. Onda, Y. Bando, T. Ohba, K Otsuka, Mater. Trans. JIM, 33 (1992) 354 https://doi.org/10.2320/matertrans1989.33.354
  16. R.D. james and K.E. Hanes, Acta Mater., 48 (2000) 197 https://doi.org/10.1016/S1359-6454(99)00295-5