Journal of Korean
Data & Information Science Society
2002, Vol. 13, No.2 pp 365 379

On the Effectiveness of Centering, Interpolation and Extrapolation in Estimating the Mean of a Population with Linear Trend

Hyuk Joo Kim1) and Sun-Ju Jung2)

Abstract

We apply the techniques of interpolation and extrapolation to derive a new estimator based on centered modified systematic sampling for the mean of a population which has a linear trend. The efficiency of the proposed estimation method is compared with that of various existing methods. An illustrative numerical example is given.

Keywords: Centered modified systematic sampling, Extrapolation, Infinite superpopulation model, Interpolation, Linear trend.

1.

Professor, Division of Mathematics and Informational Statistics & Institute of Basic Natural Science, Wonkwang University, Iksan, Jeonbuk, 570-749, Korea. E-mail: hjkim@wonkwang.ac.kr

^{2.} Graduate Student, Major of Mathematics Education, Graduate School of Education, Wonkwang University, Iksan, Jeonbuk, 570-749, Korea.

```
(centered systematic sampling: CSS), Sethi(1965)
                                                               Murthy (1967)
(balanced systematic sampling: BSS), Singh (1968)
                                                                                       (modified
systematic sampling: MSS)
  Kim (1985)
                                   k가
                                                               , CSS
                                                                           MSS
               (centered modified systematic sampling: CMSS) , CSS
                                                                                    BSS
                        (centered balanced systematic sampling: CBSS)
   CMSS
              CBSS
                               MSS
                                        BSS
                                                             MSS
                                                                      BSS
                                            n
                                                                 CSS
                                             OSS
                                                                          OSS
                                                                 가
(centering)'
                                          k가
                 3
                                                                   MSS
          n
(interpolation)
                                                                                         (MIE)
                             (extrapolation)
Kim
        Oh (2002)
MIE
                    MSS
                    MIE
                                                                       CMSS
                           , MIE
        가
                            2.
                                                                 U_1, U_2, \cdots, U_N
                       N
                                                 N
k = N/n
          S_{i}^{'} ( i = 1, 2, \dots, k)
  S'_{i} = \{ U_{i+(j-1)k} : j = 1, 2, \dots, n/2 \} \bigcup \{ U_{N+1-i-(j-1)k} : j = 1, 2, \dots, n/2 \}
 S_{i}^{'} = \{ U_{i+(i-1)k} : j = 1, 2, \cdots, (n+1)/2 \} \bigcup \{ U_{N+1-i-(i-1)k} : j = 1, 2, \cdots, (n-1)/2 \}
                   N = 28, n = 7, k = 4
                                                    S_{1}^{'} = \{ U_{1}, U_{5}, U_{9}, U_{13}, U_{20}, U_{24}, U_{28}, \},
 S_{2} = \{ U_{2}, U_{6} \}
 U_{10}, U_{14}, U_{19}, U_{23}, U_{27} }, S_{3}^{'} = \{ U_{3}, U_{7}, U_{11}, U_{15}, U_{18}, U_{22}, U_{26} \},
```

$$S_{4}^{'} = \{ U_{4}, U_{8}, U_{12}, U_{16}, U_{17}, U_{21},$$

 U_{25} } **CMSS** Kim (1985) MSSCSS MSS. *k*가 $S_{(k+1)/2}$ CMSSCSSk7 $S_{k/2}$ $S_{k/2+1}$ 1/2 \overline{y}_{cm} \overline{Y} $MSE\left(\overline{y}_{cm}\right) = \frac{1}{2} \left\{ \left(\overline{y}_{k/2} - \overline{Y}\right)^{2} + \left(\overline{y}_{k/2+1} - \overline{Y}\right)^{2} \right\}$ (2.1) \overline{y}'_{i} S'_{i} $(i = 1, 2, \dots, k).$

.

k7! n 3 \overline{Y} . N=28, n=7, k=4 . CMSS $S_2' S_3'$. $S_2' S_3'$. $S_2' S_3'$. 7!

 $, s_{2}^{'}7 + \overline{Y}$ (2.2)

$$\overline{y}^{'*}_{2} = \overline{y}_{2}^{'} + \frac{1}{56} (y_{22}^{'} - y_{21}^{'})$$
(2.3)

$$S_{3}^{'}$$
 y_{3} y_{7} . $y_{2.5}$ $(1/8)(9y_{3} - y_{7})$. y_{3}

$$\overline{y}^{'*}_{3} = \frac{1}{7} \left\{ \frac{1}{8} (9y_{3} - y_{7}) + y_{7} + y_{11} + y_{15} + y_{18} + y_{22} + y_{26} \right\}$$

$$= \overline{y}^{'}_{3} - \frac{1}{56} (y_{7} - y_{3})$$

$$= \overline{y}^{'}_{3} - \frac{1}{56} (y_{32}^{'} - y_{31}^{'})$$

$$(2.4)$$

$$\overline{y}^{'*}_{k/2} = \overline{y}_{k/2}' + \frac{1}{2nk} (y_{k/2,2}' - y_{k/2,1}')$$

(2.5)

369

 $S_{k/2+1}$

$$\overline{y}^{*}_{k/2+1} = \overline{y}_{k/2+1} - \frac{1}{2nk} (y_{k/2+1,2} - y_{k/2+1,1})$$
(2.6)

(2.0)

'extrapolation'

OMIE ('centered modified systematic sampling' interpolation'

CMIE \overline{y} \overline{y}

$$MSE(\overline{y}_{cmie}) = \frac{1}{2} \left\{ (\overline{y}_{k/2}^{*} - \overline{Y})^{2} + (\overline{y}_{k/2+1}^{*} - \overline{Y})^{2} \right\}$$
(2.7)

3.

 $\begin{array}{ccc} & \text{Cochran} \, (1946) & \text{(infinite superpopulation} \\ \hline \text{model)} & \overline{y}_{\textit{cmie}} & . \end{array}$

,

$$y_i = \mu_i + e_i$$
 $(i = 1, 2, \dots, N)$ (3.1)

$$\mu_i$$
 i , e_i $E(e_i) = 0$, $E(e_i^2) = {}^2$, $E(e_ie_j) = 0$ (i j) . E

370

μ y .

$$\overline{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mu_{i}$$

$$\mu_{ij} = \mu_{i+(j-1)k} \quad (j = 1, 2, \dots, (n+1)/2) \quad (n :)$$

$$\overline{\mu}_{i} = \frac{1}{n} \sum_{j=1}^{n} \mu_{ij}$$

$$\overline{\mu}_{k/2}^{*} = \overline{\mu}_{k/2}^{*} + \frac{1}{2nk} (\mu_{k/2,2}^{*} - \mu_{k/2,1}^{*})$$

$$\overline{\mu}_{k/2+1}^{*} = \overline{\mu}_{k/2+1}^{*} - \frac{1}{2nk} (\mu_{k/2,2}^{*} - \mu_{k/2,1}^{*})$$

1. (3.1)
$$7 \nmid , \overline{y}_{cmie}$$

 $A = \sigma^2 (1/n - 1/N)$ () , k , n 3

$$EMSE(\overline{y}_{cmie}) = \frac{1}{2} \left\{ (\overline{\mu}_{k/2}^{*} - \overline{\mu})^{2} + (\overline{\mu}_{k/2+1}^{*} - \overline{\mu})^{2} \right\} + A + \frac{\sigma^{2}}{2n^{2}k^{2}}$$
(3.2)

$$\mu_i = a + b i (a \quad b \quad , b \neq 0)$$
 , \uparrow

$$y_i = a + bi + e_i$$
 $(i = 1, 2, \dots, N)$ (3.3)

$$\overline{\mu} = a + (b/2)(N+1)$$
 $\overline{\mu}_{i}^{*} = a + (b/2)(N+1)(i=1,2,...,k)$

2. (3.3)
$$7 + , \overline{y}_{cmie}$$

$$EMSE(\overline{y}_{cmie}) = A + \frac{\sigma^2}{2n^2k^2} (k: , n:3)$$
 (3.4)

4.

기
$$\overline{y}_{cmie}$$
 가 \overline{y} ,

4.1

(simple random sampling: SRS), OSS, CSS, BSS, MSS

CBSS, Fountain Pathak (1989)

(centered balanced sampling: CBS)

(two-end sampling: TES)

(simple random Kim (1985)

(centered modified sampling: CBS)

$$EMSE(\widehat{Y}) = A + b^{2}f(n,k)$$
(4.1)

f(n,k) n k .

$$f(n,k) = \begin{cases} \frac{1}{12} (nk+1)(k-1) & (SRS) \\ \frac{1}{12} (k^2-1) & (OSS) \\ \frac{1}{12n^2} (k^2-1) & (MSS, BSS) \\ \frac{1}{4} & (CSS) \\ \frac{1}{4n^2} & (CMSS, CBSS, CMS, CBS, TES) \\ b \\ (4.1) & . \\ CMSE (\sqrt{y}, pric) ??! & EMSE (\sqrt{Y}) \end{cases}$$

$$(3.4) \quad (4.1), (4.2) \qquad .$$

 $EMSE(\overline{y}_{cmie})$ 7 $\vdash EMSE(\widehat{Y})$

$$\sigma^2 < 2b^2 n^2 k^2 f(n,k) \tag{4.3}$$

4.2 가

가

(1) (end corrections: EC) (Yates, 1948)

$$EMSE(\overline{y}_{ec}) = A + \frac{-\sigma^2(k^2 - 1)}{6k^2(n - 1)^2}$$
(4.4)

(2) MSS (MI) (Kim, 1998)

$$EMSE(\overline{y}_{mi}) = A + \frac{\sigma^2}{12n^2} (4 - 12A_k + 6kB_k - \frac{1}{k^2})$$
 (4.5)

373

(3) MSS (MIE) (Kim Oh, 2002)

$$EMSE(\overline{y}_{mie}) = A + -\frac{\sigma^2(k^2 - 1)}{6n^2k^2}$$
 (4.6)

(4) BSS (BI) (Kim, 2000b)

$$EMSE(\overline{y}_{bi}) = A + \frac{\sigma^2}{2n^2} (1 - 4A_k + 2kB_k)$$
 (4.7)

(5) BSS (BIE) (Kim, 1999)

$$EMSE(\bar{y}_{bie}) = A + \frac{\sigma^2}{2n^2}(1 - \gamma - 2 \ln 2 + C_k)$$
 (4.8)

(6) CMSS (CMI) (Kim Choi, 2002)

$$EMSE(\overline{y}_{cmi}) = A + \frac{\sigma^2}{4n^2} \left\{ \frac{1}{k^2} + \frac{1}{(k+1)^2} \right\}$$
 (4.9)

(7) CBSS (CBI) (, 2000)

$$EMSE(\overline{y}_{cbi}) = A + \frac{\sigma^2}{2n^2(k+1)^2}$$
 (4.10)

(8) CBSS (CBIE) (Kim, 2000a)

$$EMSE(\overline{y}_{cbie}) = A + \frac{\sigma^2}{4n^2} \left\{ \frac{1}{(k-1)^2} + \frac{1}{(k+1)^2} \right\}$$
 (4.11)

, (4.5), (4.7), (4.8)

< 1> k = 8 $EMSE(\cdot)/\sigma^2$

n	EC	MI	MIE	BI	BIE	CMI	CBI	CBIE	CMIE	A / σ^2
5	.1853	.1794	.1816	.1773	.3065	.1753	.1752	.1753	.1753	.1750
25	.0353	.0352	.0353	.0351	.0403	.0350	.0350	.0350	.0350	.0350
55	.0160	.0159	.0160	.0159	.0170	.0159	.0159	.0159	.0159	.0519
105	.0083	.0083	.0083	.0083	.0086	.0083	.0083	.0083	.0083	.0083

375

					2
<	2>	k =	12	$EMSE(\cdot)$	V 0 ²

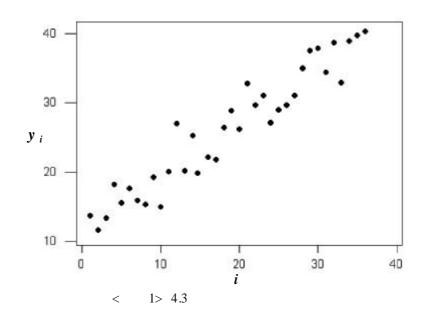
n	EC	MI	MIE	BI	BIE	CMI	CBI	CBIE	CMIE	A/σ^2
5	.1936	.1877	.1899	.1855	.4054	.1835	.1835	.1835	.1835	.1833
25	.0370	.0369	.0370	.0368	.0456	.0367	.0367	.0367	.0367	.0367
55	.0168	.0167	.0168	.0167	.0185	.0167	.0167	.0167	.0167	.0167
105	.0087	.0087	.0087	.0087	.0092	.0087	.0087	.0087	.0087	.0087

					2
	3 \	$\nu - 20$	EMSE (- \/	کہر ا
<u> </u>	.)/	$\lambda - 20$	12 171 13 12 1	- //	

n	EC	MI	MIE	BI	BIE	CMI	CBI	CBIE	CMIE	A/σ^2
5	.2004	.1945	.1967	.1923	.5993	.1900	.1900	.1901	.1901	.1900
25	.0383	.0382	.0383	.0381	.0544	.0380	.0380	.0380	.0380	.0380
55	.0174	.0173	.0174	.0173	.0207	.0173	.0173	.0173	.0173	.0173
105	.0090	.0090	.0090	.0090	.0100	.0090	.0090	.0090	.0090	.0090

$$y_i = \ 12 + 0.8 \ i + \ e_i \ (i = \ 1, 2, \cdots, 36) \end{(4.12)}$$

$$(a = 12, b = 0.8).$$
 e
 $N = 36$


6.25 , e_i , (MINIT AB)

RANDOM e_i

•

가

13.6839	11.6511	13.3656	18.1942	15.5398	17.5994	15.8701
15.3858	19.2696	14.9848	20.1140	27.1042	20.2535	25.3537
19.7502	22.1680	21.8483	26.5246	28.8520	26.2472	32.8601
29.6664	31.0889	27.1769	28.9758	29.7617	31.1108	35.0991
37.6050	38.0048	34.4999	38.8084	32.9485	39.0079	39.8043
40.3434						

377

$$MSE(\overline{y}_{sss}) = 6.2781, \qquad MSE(\overline{y}_{ass}) = 1.2089, \qquad MSE(\overline{y}_{mss}) = 0.1758, \\ MSE(\overline{y}_{bss}) = 2.3746 \\ MSE(\overline{y}_{css}) = 0.0438, \qquad MSE(\overline{y}_{cmss}) = 0.0423, \qquad MSE(\overline{y}_{cbss}) = 1.3592, \\ MSE(\overline{y}_{cms}) = 0.2443 \\ MSE(\overline{y}_{chs}) = 1.7606, \qquad MSE(\overline{y}_{tes}) = 0.0466, \qquad MSE(\overline{y}_{ec}) = 0.2274, \\ MSE(\overline{y}_{mi}) = 0.1078 \\ MSE(\overline{y}_{mi}) = 0.2006, \qquad MSE(\overline{y}_{bi}) = 2.0654, \qquad MSE(\overline{y}_{bi}) = 3.2915, \\ MSE(\overline{y}_{cmi}) = 0.0478 \\ MSE(\overline{y}_{cmi}) = 1.2648, \qquad MSE(\overline{y}_{cbie}) = 1.2323 \\ \\ CMIE \\ \overline{y}^* = 25.9290 \\$$

, n = 3 $k7 \uparrow$ \overline{Y} . (CMIE) Kim (1985) CMSS () \overline{y}_{cmss} \overline{y}_{cmie} \overline{Y}

Cochran (1946) CMIE

CMIE Kim Oh (2002)

MIE

, CMI, CBI, CBIE

가

가

- 1. , (2000), , , 13 2 , 457-476.
- 2. Cochran, W. G. (1946), Relative accuracy of systematic and stratified random samples for a certain class of populations, *Annals of Mathematical Statistics*, 17, 164-177.
- 3. Fountain, R. L. and Pathak, P. K. (1989), Systematic and nonrandom sampling in the presence of linear trends, Communications in Statistics Theory and Methods, 18, 2511-2526.
- 4. Kim, H. J. (1985), New systematic sampling methods for populations with linear or parabolic trends, Master Thesis, Department of Computer Science and Statistics, Seoul National University.
- 5. Kim, H. J. (1998), Estimation of population mean using interpolation in modified systematic sampling, Korean Annals of Mathematics, 15, 217-231.
- 6. Kim, H. J. (1999), A study on estimating population mean by use of interpolation and extrapolation with balanced systematic sampling, *Journal of the Korean Data & Information Science Society*, 10, 91-102.
- 7. Kim, H. J. (2000a), A new estimator of population mean based on centered balanced systematic sampling, *Journal of the Korean Data & Information Science Society*, 11, 91-101.
- 8. Kim, H. J. (2000b), Estimation of mean using balanced systematic sampling and interpolation for population with linear trend, *Journal of the Korean Statistical Society*, 29, 455-471.
- 9. Kim, H. J. and Choi, B. C. (2002), Efficient estimation of population mean using centered modified systematic sampling and interpolation, *The Korean Communications in Statistics*, 9, 175-185.
- 10. Kim, H. J. and Oh, E.-S. (2002), A study on estimation of the population mean using modified systematic sampling, interpolation and extrapolation, Korean Annals of Mathematics, 19, to appear.
- 11. Madow, W. G. (1953), On the theory of systematic sampling, . Comparison of centered and random start systematic sampling, *A nnals of M athematical Statistics*, 24, 101-106.
- 12. Murthy, M. N. (1967), Sampling Theory and Methods, Statistical Publishing Society, Calcutta, India.

- 13. Sethi, V. K. (1965), On optimum pairing of units, Sankhya, B27, 315-320.
- 14. Singh, D., Jindal, K. K. and Garg, J. N. (1968), On modified systematic sampling, *Biometrika*, 55, 541-546.
- 15. Yates, F. (1948), Systematic sampling, Philosophical Transactions of the Royal Society of London, A241, 345-377.

[2002 9 , 2002 10]