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Estimation of the Number of Change- Points
with Local Linear Fitl)

Jong Tae Kim2): Heymi Choi3)
Abstract

The aim of this paper is to consider of detecting the location, the
jump size and the number of change-points in regression functions by
using the local linear fit which is one of nonparametric regression
techniques. It is obtained the asymptotic properties of the change points
and the jump sizes. and the corresponding rates of convergence for
change-point estimators.
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1.

Nonparametric regression techniques are generally used in order to obtain a
smooth fit of regression function whenever there is no suitable parametric model
available. Sometimes a generally smooth function might contain some isolated
discontinuity or multiple change points in the function or in a derivative, and in
many cases interest focuses on the occurrence of such change points. The
analysis of change points usually occurring in economics, engineering medicine and
biological sciences has recently found increasing interest.

The purpose of this paper is to obtain asymptotic distributions and
corresponding rates of convergence for change-point estimators. This results is
very important to suggest the methods for testing and estimation to detect the
location and size of change-points in regression function by using the local linear
fit
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In the literature, testing and estimation about changes in the nonparametric
regression function has been studied by many authors. Muller(1992) gave
estimators for location and size of change-points in nonparametric regression
based on a comparison of a left and right one-sided kernel smoothers. Loard(1996)
proposed an estimate of the location of discontinuity based on one-side
nonparametric regression estimates of the mean function. Chen and Gupta(1997)
studied testing and locating variance change points with application to stock price
using the Schwarz information criterion.

2. Estimates of location and jump size of change points

The nonparametric regression model considered in this paper is given by
Yi=m(x;)+¢&, x,=][0,1], i=12,...,n, (2.1)
where x; are fixed design points and &; are iid errors with mean 0 and variance
o’ <oo. The design points x; are assumed to be equidistant, i. e. x;,=i/n. m

is the unknown regression function defined on the interval [0, 1].
The regression estimators we consider are based on the local least squares
fitting of kernel weighted polynomial regression function. The locally weighted

polynomial regression estimator of m is 7,, the solution for &, to minimize the
kernel weighted local-likelihood function

= - 2%&u_x>fK(“gX) (22)

Assume that some change-points exist for m in the following sense. There exists
g € C%([0,1]) such that

m()=g( )+ 28,1050, (23)

where c¢;, nc are unknown and g¢g( -) has a bounded second derivative.

Let K, and K. be one-sided kernel functions with  support
(K,)=e[-1,0] and support (K .)=][0,1]. For simplicity, let

u (F)= f my'F(y)dy. The kernel K. (-) is (u- 1) times differentiable on R

and K (o is  absolutely continuous  density  function satisfying
p1(K)= ps(K)=0,4,(K)>0, KU(0)=KI(1)=00<j<p and
K,(x)= K. (- x). Define m Y (x,) = |iP1 m Y(x), mD(x,) = Iip1 m 9 (x),

j=0,1,2.
A(Xg) = mMmu(Xg) - m_(Xg). (24)
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Then the following holds, for any x,=1[0, 1],

m. (Xo) = M(xo), m¥=gY(xo), j=1,2.

JAW if Xo= Cj,
A (Xg) =
0 otherwis.

Define one-sided regression estimates of m(x),

A 00z Y @5)
J

where

+ X- X + +
wit= () s ne (%) S,

" X=X
S .= 2K i( hJ)X-Xj)', I=0,1,2.
Inference for change points will be based on the following estimates
A= M. (- m (). (26)

wherex; is called to be a change point if |/A\(xj)| >C, j=12,..,n, for

some constant C, at a given significant level 1- &« where C, will be given

below.

Observe the following before investigating bias and variance of A (x).

. . + X - Xj |
Proposition 2.1 Define S ;= ZK i( h )x- x;), 1=0,1,2..

+

(1) Sa=nh""([K (uu'dy+ O(Un) = nh'" [ (K.)+ O(1n)].

(2) 2W;" = S;oSn,- (San?=n’h*[um(K. )+ O(Un)].

(3) S(w,H2= (S5 KA (Y (57922 kA B2 \ix- xp)?
j - n,2 i( h ) ( n,1) i( h )(X XJ)

+ + X- X
- 2878 KA ()0 x)

=n’h" [ £3(K %) + O(Un)].

Now, we consider the bias and variance of A (Xo), Xo < [h,1- h] in the

following.
Proposition 2.2 Assume that the jump size is A (X,) at point Xg.
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(1) Bias : E (A (Xg)- A(Xe) ) = o(h?).

(2) Variance : Var (A (xo)) = —znc—{:— (#O(K_Z) + 0o(1).

Prod (1).
E [ A (Xo)- A(Xo) ]

E[ M. (xo)- M. (xo)]- E[Mi(X0)- m.(Xo) ]

E| M. (Xo) - M. (Xo) ]1- E[ m. (Xo) - m. (Xo) ]

E ZWJ+(YJ' m. (Xo)) £ ZWJ_(YJ' m. (Xq))

B 2w/ 2wy

1 + ;
= n2h4[#2(K_)+ o(U ] [Z{m(xj)- m, (Xo) YWy - Z{m(xj)- m. (Xo) }W; ]
by Proposition 2.1- (2). Let now be
Ri(xj)) = m(x;) - ma(Xe) - (Xj- Xq) mli(xo)-
Since
Z(Xj' Xo) Wji = Z(Xj' Xo) K i(x-hXj )(Sni,z - (x- Xj)SniJ)

= - S,,S,1+ S,2S,,=0,
2{mx) - ma(xo) bwT = 23{m(x)) - m (X)) - (X;- Xo)m (Xo) bw;”

and hence we have
1 Xo- Xj
LR () K+(—h )

X

Jimeo- m. )+ (x xam 0} K (P4 ) dx+ o

hf_ol{m(Xo- hu)- m.(xo)+ hum, (xo) } K. (u) du+ O(1/n)

07 ) - hum (o) + () - mL () + hum (xo)

+ o(h?u?)) K, (u)du+ O(1/n)

3

= D m2 (xo)ua(K ) + o(h%) + O(V/ n).
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o ZRL00) (xo- %) K ()

X

JAm0 - m (0= (- x6) M0 Fxo- %) Ky (Fo5 ) dxs o)

hf_ol{m(xo- hu)- m.(Xo) + hum, (xo)}hu K . (u) du+ O(1/n)

0 [ Cm o) hum xa) + T m () - s (xo) + hum (xo)

+ o(h%u®))u K, (u)du+ O(1/n)

= - m. (xo)pa(K L)+ o(h®) + O(1/ ).

Thus it follows from Proposition 2.1- (1), (2) and (3) that
2.6 .
S (mx ) - ML (xe) W= DR ()W, = T [m ] (xo)ud(K L)+ o(D)].
2.6
similarly, 3 (m(x;) - m. (o) Wj = I [ mlxo) w3(K ) + o(D) 1.
T herefore
1

E(B(X)- A(Xo)) = (2R (X )W - 2IR. (x,)W; )

n*h’ {4,(K )+ O(1n)}
= o(h?).

Prod (2). First, note that Cov( M, (Xo), M. (X)) =0 since ¢g's are

independent and (j : - 1 < (Xo- X;)/ h<0) and (j:0< (Xo- %)/ h<1)

are disjoint. Thus, Var( A (xo))= Var( m, (xo))+ Var( m. (x,)). Since it now

follows from Proposition 2.1- (2) and (3) that

R 2 W )2 2
Var( . (x) = “E(W_J))z = O uo (K 2)+ o(D)],
]

2
Var( R (xo) = 25 (uo(K %)+ o(1)).

3. Main Results

In this section, we consider the asymptotic distributions and corresponding rates
of convergence for change-point estimators.

Lemma 3.1. For fixed x,=(0,1) as n—oo, h—0 in such a way that

nh—- oo
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A (Xo ) - A(Xg)
oV,

where g, is a consistent estimate of ¢ and

Vo= 20 (W72 2 (W) )2+ 2 (W) (w2

CK n (XO )E

— N (0,1), (3.1)

In addition,
Vinh (B (x0) - A(%0))
?7n \/ 2 po(K -2) -
Prod. For simplicity, leta, denote a = W,/2W, - W, /2W, . Then

N (0, 1). (3.2)

>a?= V, and hence CK, can be rewritten as >.a & /| &, >a°. Since it
J J J

is shown that aAnZ — ¢, it is sufficient to prove (3.1) with respect to CK , with

o in place of ?fn. It follows, in Proposition 2.1-(2) and (3), that
2
a.
max j<j<p ZJaZ = O( nlh) and hence Lindberg's condition is satisfied. Therefore
j
asymptotic normality of CK , follows. Since
28 = 2p(K ?) 1 (nh) + o(1/(nh)), the equation (3.2) follows.

Let r denote a location of a change point of m(x). Assume that we know A
is a closed neighborhood of r in which r is only one change point of m(x).
Define the estimator

T= inf{oeA: R (0)= sup,ea A (X)}

for the location of a change point 7. Now, we investigate limiting properties of

Z. In order to do that define
S(y) = R(z+yh) = m, (z+yh)- m. (z+yh)
and define for some 0<M <oo, - M <z <M, the sequence of stochastic

processes

- (e+ DI(21) % z S
&(z) = (nh) (6 Ciamy 7 ) 2@)
Note that

Tk (FRE)m0g) Sia = 0t () [K L (u) mec- hu) du v O(nh),

K. (X'hxj )(x- X, ) m(x)Si, = O(nh*).
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Thus we have E{ m. (r+yh)}= fKi(u) m(z+ yh- uh) du + O(l/n) and

hence

EC3W) ) = [ (K. (- K_(u)g(e+ yh- uh) du + o(/n),

which is the same as the equation (6.2) of Muller(1992). T herefore following the
same techniques used below (6.2) of Lemma 6.1 in Muller gives

E¢(z) = - Az* 'K #(0) / (u+ 1! + o(1).
Now, we consider covariance of &,(z). First, let A= (u+ 1)/ (21), y= 1/ (24),

SZ(2) = 2K . (r+ (z)/(nh) *- x, )( c+ (zh)/(nh) 7- x,)', 1=0,1,2.

h
and
Wﬁz =K, (Z'+ (Zh)/ﬁnh) g X; ){S;LZ(Z) - (Z'+ (zh)/ (nh) v Xj)SrJf,l(z)}-
T hen
- — A W;,z _ W+0 iz WJO
£(2)- E L&D} = (nh) Z[ S S o 2[ Swl W

Observe now for any ze[- M, M]

Soi(@=nh" [ p (K.)+0(Wn)], 2w, =n’h*[ug(K. )+ O(Un)].
Thus we have

Cov(&n(z4),8n(z2))

(nh! ﬂdz + + + + + -
n*h®u,(K )2 7 20 [(Wiem Wi (Wis- Wi~ (Wig - Wio(Wi,,-

-(W

A ) ()
e r+ (ZZh)/(nh)V- X\ K . _Zi

[ ( T+ (z h)/(nh)7- x) )]

[« ) <)l

" [K _ (r+ (zzh)/h(nh)V- X ) K r.hx )]

W o)

j.zy " JO)(W-J"ZZ J 0) + (WJ Zy j,o)(W},zz' WJO)]
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K r+ (zh)/ (nh) 7- x KL (X
+ [ (r+ (z h)/h(nh) "o x ) ( -h )]
><[K_( = ) K_(r—hx)]}dx+ O(l/n)}

By the assumptions for K ., then

K i(r+ (zh)/énh)V- x)_ K i(r-hX)

=< ) o ) o b (e Xl

7

S i n c e fl { ;(T'h—x\io.bK ;(T+ (zh) (o " X\iOFXZ O(h).
J ) J
2fT- X _ 2 fT- X fT- X _
fKi—h )dx_th_(u)du,ande+( - )K( - )dx—O,then
Cov (£,(21).60(22)) = 22:2,0° [ K *(u)du + O (U (nh)"). (33)
Let
a = (nh)ﬂ W}rvz _ W;vo _ WJZ . WJO .
J Wi, Wi, Wi, XWig
Then&,(2) - E&(2) = 24 g. Since max ;<< a°/ 25 a°— 0,

&.(z) - E &,(z) satisfies Lindberg's condition. Thus we have asymptotic

normality of &,(z) as follows.

Lemma 3.2. For fixed ze[- M, M],
G- E&@ SN (o 22° [ K *(u) au)

For fixed z,2z, ...,z, € [- M, M],
(§n(z)- E&n(z1), v &n(z))- E Gn(z))

where X= (g;;) and o¢,; = 2 zlzzdzf K ?(u) du.
By following the similar lines to the proof of Lemma 6.5 in Muller(1992), it can

be shown that the sequence &, = &,(z)- E &,(z) is tight. This and Lemma 3.2
together imply the following.

4 N0, 3,
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Theorem 3.1 For fixed z € [- M,M],
& Yo oomoc([- MM, (34)

-

where ¢ is a continuous Gaussian process with
E&(z) = - Az* 'K #(0) ] (pu+ 1).

Cov(&(zy) z2) = 22,2, [ K 7 (u) du.

Note that £(z) in above theorem can be written equivalently as

&z) = - Az H0) 1 (p+ 1!+ Xz,

where X ~N (0, 0‘sz 2(u)du) and ¢ has a unique maximum at

Z" = [xp!l (A() K #“(0)] Y.

Let Z, be the location of the maximum of &,. Then

T = +Z,/(nh) V@),
Since Z, i Z" by Theorem 3.1 the asymptotic normality of 7z follows.
Corollary 3.1
- T d / ! 2
Vn ( - ) 4N (0, 252\A(T)K_(#,(0) )fK (u)du) (36)
Applying the functional mapping theorem gives that &, (Z,) i ¢(z’) and

hence (nh) Y2 &.(Z,)/ (nh) “* Y29 0. This implies

(n) " { A(D- (9} P 0 by the definitions of &,(-), Z,, A(-)
and 7. Moreover since Vv nh g,/ V, i K, for some finite constant K,

{R(7)- 2D} oV V, 1 0. Therefore combining this with Lemma 3.1,

we have the asymptotic normality of A (Ar).

Corollary 3.2
cK i (p =-B(r)- A@ 4 N, 3.7)

anV Vi
Asymptotic 100(1- a)% confidence intervals of r and A(7) are
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T h[0 Y- @l2) w5l (B (F) K. (0)] Y x[sz 2(u)du/ (nh)] Y29, (38)

R(D = 0 *1- al2) G,V V,. . (3.9)
By Corollary 3.2. the number of change points is equivalent to the number of
the clusters of the closed neighborhood satisfied as

CK (0 > @ '(1- al2).
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