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A Note on the Two Dependent Bernoulli Arms

Dal Ho Kim1)- Young Joon Cha:- Jae Man Lee?)
Abstract

We consider the Bernoulli two-armed bandit problem. It is well known
that the myoptic strategy is optimal when the prior distribution is
concentrated at two points in the unit square. We investigate several
cases in the unit square whether the myoptic strategy is optimal or not.
In general, the myoptic strategy is not optimal when the prior distribution
is not concentrated at two points in the unit square

Keywords : Bandit problem, Bernoulli, myopic, optimal. prior
distribution, two-armed.

1. Two-Armed Bandit Problems

Consider two dependent Bernoulli arms (or experiments) with the prior for
(0., 8,) only concentrated on two points in the unit square. So arm 1 generates

ii.d. Bernoulli random variables (generically denoted by X) with mean ¢,, and

arm 2 generates ii.d. Bernoulli random variables (generically denoted by Y) with
mean @,. Furthermore, every X is independent of every Y. The discount

sequence is the N-horizon uniform. Objective is to maximize the expected sum of
N observations when N is fixed. This two-armed Bandit problem is well
introduced in Berry and Fristedt(1985).

It is of interest to know under what conditions the myopic strategy is optimal:
always select the arm with greater mean. It is called myopic because it "behaves"
as if there were always just on more trial to be allocated. When the myopic
strategy is optimal, it means that the optimal strategy does not depend on the
number of trials remaining: it is time invariant, so to speak.

Feldman(1962) considered this problem in the case that (4,, 4,) is either
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(a, b) or (b,a) where 0<a<b<1. So the distribution of (4,,4,) can be
specified by the single number ¢= P(4,= a)= P(8, = b). He considered the
procedure which minimizes the expected number of "mistakes" made by the
statistician during the procedure (or minimizes the expected number of the inferior
arm). In fact, this is equivalent to maximizing the expected number of successes
in this situation.

For j=1,...,N and 0<¢< 1, we shall consider the situation in which the total
number of observations remaining to be taken is j and the distribution of 4, and
0, is specified by the probability ¢= P (6, = a). In this situation, let & denote
the procedure which specifies that the first observation should be taken on X and
then an optimal procedure should be adopted over the remaining j- 1
observations, and let  m,* (¢) denote the expected number of mistakes during the
j observations for which the procedure &% is used. Similarly, let &Y denote the
procedure which specifies that the first observation should be taken on Y and
then an optimal procedure should be adopted over the remaining j- 1
observations, and let m; ¥ (¢) denote the expected number of mistakes when the
procedure 8 ' is used.

Furthermore, let &' be the procedure which specifies that the first
observation should be taken on X, the second observation should be taken on Y,
and then an optimal procedure should be adopted over the remaining j- 2
observations. Similarly, let & be the procedure which specifies that the first
observation should be taken on Y, the second observation should be taken on X,
and then an optimal procedure should be adopted over the remaining j- 2
observations. Also, let m*Y(¢) and m;* (¢) be the expected numbers of
mistakes for these procedures.

As usual, for the prior probability ¢, let #(X), #(Y), (X, Y), or &(Y,X)
denote the posterior probability when either X (or YY) is taken or (X, Y) (or
(Y, X)) are taken in that order. The following two lemmas and Theorem 1 are
given in DeGroot (1970).

Lemma 1. For and for 0<¢<1, j=2,3,... m " (¢) = m ™ (4).
Lemma 2. For each fixed value of t in the interval 0<t<1, the
probabilities P{4(X)>t} and P{¢4(Y)>t} are nondecreasing functions or ¢

(0< $<1).

Theorem 1. Let § be a procedure which specifies that an observation
should be taken on X at any stage for which ¢= P (6, = a)<1/2 and that an
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observation should be taken on Y at any stage for which ¢>1/2. Then § is an
optimal sequential procedure.

Theorem 1 means that at every stage the statistician should taken an
observation on the random variable X and Y for which there is the greater
probability that the observed value will be 1. In other words, the optimal
procedure is the myopic procedure under which the statistician makes a choice at
each stage as if it were the final stage.

Kelley (1974) considered the case that the prior for (8,, 8,) is concentrated on
two points: (a, b) and (c,d) where 0<a, b,c,d<1 For n=0,..,N, let
V, (&) denote the optimal expected gain for the remaining n trials when &£ is the
current prior distribution for (8,, 8,). These functions are defined by the
following recursive formulas.

Vo(£) = 0,
and

Vo (E)= max{E[X + V, 1 (EX NI, E[Y+ V, . (&Y)]} for n=1, ..., N,
where £(X) denotes the posterior distribution after an observation on X, and
E(Y) the posterior distribution after an observation on Y. It follows from above
formulas that there exists functio V,(&) = max{F,(&), G,(§)Ins F,(&) and
G, (&) such that

for n=1,..,N
T hese functions are also defined recursively. Let F,(£)= 0 and G, (&) = 0. Then
for n=1, ...,N,

Fa(8) = E[X+ max{F, 1(£(X)), Gy 1(£(X )},
and

Gh(£)= E[Y+ max{F, 1(£(Y)), Gn. 1(£(Y))}.
Let D,(&)=F,.(&- G,(&), the relative advantage of experiment 1 over
experiment 2. Recursive formulas may be developed for defining D,(&). In fact,

Di(¢) = E(61) - E(62),
and for n=2, ..., N,

Dn(£)= E[Dn. 1 (E(X ) 1+ E[Dn. 1 (E(Y)) ]
where X * denotes max {X , 0} and X  denotes min{X , 0}.

Using these formulas, the optimal strategies can be characterized. If a> band
c>d, then D,(£)<0 for al & and for n= 1, ..., N. So the optimal strategy is
to always use arm 2. Now assume that b>a and c>d.
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Theorem 2. For each n= 1,2, ....N, the following are true:
() D,(&) is a strictly increasing function of &.
() D,(&) is a continuous function of &.
() D.(£)<0 and D,(&)>0.
() There exists an unique &, (0, 1) such that D,(«,) = O.

Theorem 2 was proved by Kelly(1974). This theorem means that the optimal
strategy is determined by an unique sequence of constants ., @,, , ..., ay. From
above results, it follows that whenever a<b and c<d the myopic strategy is
optimal. Also, this is true whenever a>b and c¢>d. When b>a and c>d, from
above theorem, the myopic strategy will be optima if and only if
@1= @, = = ay= « Where a,, @,, ..., @y are those unique constants determining
the optimal strategy.

In search for conditions under which the myopic strategy is optimal,
Kelley (1974) showed that for N=>=3, except for some simple special cases,
Feldman's assumption that a= d and b= c is necessary for the conclusion that
myopic strategies are optimal.

Theorem 3. Suppose the prior distribution on (8,, 8,) is concentrated at
two points (a, b) and (c,d) in the unit square and that N>3. The myopic
strategy is optimal if and only if one of the following four conditions holds.

() a<band c<d,
() a=band c>d,
() a+ b=c+d= 1,
() (c,d)= (b, a).

Theorem 3 was also proved by Kelly(1974). This theorem gives necessary and
sufficient conditions for the optimality of the myoptic strategy in terms of

a, b, cand d.

2. Main Results

Now we consider more general situations. Question: Even if the prior
distribution is not concentrated at two points, does the myopic strategy remain
optimal for some cases?

Let G be the distribution on {(6,, 6,)|0<6;<1,i= 1,2}, and let F; be the

corresponding marginal distribution of the ¢; (i = 1, 2).
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Case 1. {(6.,, 6,)]6,= 0}.
Since F, is to the right of F,, we always use arm 2. So the myopic strategy is
optimal.

Case 2: {(6,, 8,)|6.<6,}. Since 6,<6, as., we aways use arm 1. So the
myopic strategy is optimal.

Case 3: {(0,,86,)|60,+ 6,= 1}. Let v,=E[6,] and v,=E[ 6,°]. So
E[6,]= 1- v, and E[ #,°]= 1- 2v,+ v,. Let n= 2. Assume stay-on-a-winner

rule. Consider
A= v+ vp+ (1- vi)[(ve- vo)/(1- vi)V (1- vy)]
- {(1- vy)+ (1- 2vy + vy) + Vg (Vg - Vo) vV v}

where \/ denotes maximum. We show that if v,>1/2, then A4>0 for any v,
such that v,>°<v,<v,. Now
4= 22vi- D+ [(vi- )V (L- v)°]- [(vi- v2)V vi°]
) (Vi- V,)> vi? i 4= 2(2v,- 1)>0.
) (1- vi)<(vi- V)< vy 0 4= 2(2v, - 1)+ (vi- V) - v
= (2vi - D+ [(vi- vp)- (1- vi)*]>0.

) (Vi- Vy)<(1- vi)?: 4= 2@2v,- 1)+ (1- v))?- v,°= 2v;- 1>0.

Now consider

A= v+ vV /viV(1- vi) T+ (- v)[(ve- V) (1- v) V (1- vy)]

- {(1- v)+ (- vl (1= 2vi+ V)l (1- v) Vvl + vi[ (vy - vp)lvi V vi]}
= (2vi- D+ [VaVvi(1- vi)l+ [(vi- Vo)V (1- vy)7]

- [(1- 2vi+ v) Vvi(1- v)l- [(vi- Vo)V Vlz]
Since [v, V vi(1- v)]1=[(1- 2vi+ vy) V vi(1- vy)]

and
(2vy - D+ [(vi- Vo)V (1- V)]~ [(vi- V)V v,*]>0 from A case,
we can get easily A4'=0.

Case 4. {(0,, 6,)|0<0,, 0,<1} In general, myopic strategy is not optimal in
the unit square. We have the following counter example. Assume n= 2. Consider
G=F,%xF,,  dF,(60,) < 0, (1- 0,) 9*dg,, and dF,(0,) o df,. Then
E(8,|F,)= 1/2- § for some §>0 and E (4, |F,)= 1/2. So in this case, myopic
strategy is not optimal.
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