Abstract
Regression trees, a technique in data mining, are constructed by splitting function-a independent variable and its threshold. Lee (2002) considered one-sided purity (OSP) and one-sided extreme (OSE) splitting criteria for finding a interesting node as early as possible. But these methods cannot be crossed each other in the same tree. They are just concentrated on OSP or OSE separately in advance. In this paper, a new splitting method, which is the combination and extension of OSP and OSE, is proposed. By these combined criteria, we can select the nodes by considering both pure and extreme in the same tree. These criteria are not the generalized one of the previous criteria but another option depending on the circumstance.