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A N e w Re de s c en din g M - E s t im at ing F un ct ion
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A b s tra c t

A new redescen ding M - est im ating fun ction is introduced. T he est im at or s by
this new redescendin g function at t ain the sam e lev el of robu stnes s as the
exist in g redescendin g M - estim ator s , but hav e les s asym pt otic v ariances th an
other s ex cept few cases . W e hav e focu sed on est im ating a locat ion param et er ,
but th e m eth od can b e ext en ded for a scale estim ation .

K e y w ord s : Minim um L2 distan ce ; M - estim ating function

1. Introduction

Redescen ding M - est im at or s h av e fun ct ion s w hich are nondecreasin g near the orig in
but then decrease tow ard th e ax is as they go far from th e origin . T hey u sually sat isfy

(x ) = 0 for all x w ith |x | r , r is a finit e num ber w hich m ay be con sidered as th e
m inim um rejection point . T hey w ere v ery successfu l in th e Princeton Robu stn ess Stu dy
(An drew s , et al., 1972). T here are m any representativ e redescen din g fun ction s :
three -p ar t red escend ing f unction (Andrew s , et al., 1972), s ine f unct ion (Andrew s , et al,
1972), biw eig ht f unction (Beat on an d T ukey , 1974), T anh f unct ion (An drew s , et al., 1972).

New redescendin g fun ct ion is ba sed on m inim ization of L 2 distan ce of a m odel

den sity an d it s den sity estim at or . Let g be a fam ily of prob ability den sit ies in dex ed by

. T he m inim um dist ance est im at or is defin ed by a stat ist ical quantity m inim izin g

L 2 distance, w hich is a solu tion to L 2

w here w e as sum e p (x ) , g (x ) L 2 an d represent s a deriv ativ e w ith respect t o
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(1)(p (x ) - g (x )) 2 dx ,

47



박노진

. T he equation (1) can be written as

Since we have g (x ) g (x )dx = ( 1/ 2) g 2 (x ) dx = 0 , if is a location

parameter , the equation (2) becomes

Given a random sample, X 1 , X 2 , ,X n , having a density g (x ) , let p (x ) be a

density estimator for g (x ) such as p (x ) =
1
n

n

i = 1

1
h

K ( x - X i

h ), where K ( ) is a

kernel and h is the window width (Silverman, 1986). T he equation (3) can be written
as

If we follow Huber (1981), and if we denote T n as an estimate of , we have

Suppose a kernel is a Gaussian and a model is the normal with mean and variance

2 , then ( 1/ h) K {(x - X i) / h }g (x )dx , a convolution of a Gaussian kernel and a

normal density , is the normal with mean and variance h 2 + 2 . After dropping
unnecessary constants , we have

P ropo s e d F u n ct ion : Redefine - function as

where r is a tuning constant .

We propose for generality to redefine the r ( t) with r as a tuning constant . T he

r ( t) is originally derived based on normal density , but in the section we will show

that it works quite well for data sampled from not only normal distribution but also

other distributions . One may consider r as a function of h and rather than just a

constant , and try to find a proper value of r by replacing h and by proper
estimator s. T here are a lot of things to talk about this idea , but this time we would like

(2)(p (x ) - g (x )) g (x ) dx = 0 .

(3)p (x ) g (x ) dx = p (x )g (x )dx = 0 .

n

i = 1

1
h

K ( x - X i

h )g (x ) dx = 0 .

(X i; T n ) =
1
h

K ( x - X i

h )g (x )dx
= T n

.

(X i; T n ) = ( X i - ) exp [ - (X i - ) 2 / 2( h 2 + 2) ]| = T n

.

(4)r ( t) = texp [ - t2 / 2r 2 ] for t ( - , ) ,
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A New Redescending M - Estimating Function

to have a function similar to the existing functions , which are controlled by constants
like tuning constant , trimming constant or bending constant .

2 . Propertie s of the propo s ed function

1 . S h ap e : For a given finite constant c >0, the class of redescending functions c

consists of all mappings : R R satisfying

is continuous on R , ( - t) = - ( t) for all t, and ( t) 0 for t 0;

the set D ( ) of points in which ' is not defined or not continuous is finite;

( t) = 0 for | t| c .

T he r in (4) satisfies the condition 1 and 2. T hough it does not fully satisfy the

condition 3, it is basically redescending (Figure 1). Since the propose r function is

slowly decaying but never becomes 0, we can avoid some computational problem s
mentioned by Huber (1981, p103) and Hampel, et al. (1986, p152), while it can
effectively handle extreme outlier s like the other redescending M - estimating functions .

Note that the estimates we got in actual calculations are so called one- step
M - estimates

which are defined by

where the initial estimates of location T ( 0)
n is the median of the observations

x 1 , ,x n , and S n = 1.483 m ed i {|x i - m ed j (x j ) }. In the process of getting one- step

M - estimates, we are not going to have '0 ' in denominator , which could cause

' overflow ' during computation , so that the proposed r ( t) produces very stable

estimates compare to the other redescending M - estimating functions. T he function r

deals various M - estimating functions from a redescending function to a non- decreasing

( t) = t according to r . When r is infinite, we have ( t) = t for all t, which

produces (non - robust , but most efficient ) least - squares estimator s . Of course, if r is

moderate, the propose r ( t) plays like a redescending M - estimating function . With a

proper value of r , we can have the r ( t) which produces the estimator as efficient as

least squares estimator while we keep reasonable level of robustness .

T n = T ( 0)
n +

S n

n

i = 1
( (x i - T ( 0)

n ) / S n )

n

i = 1
' ( (x i - T ( 0)

n / S n )
,
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2 . R obu s tn e s s : Figure 1 displays r with r = 2 and 5 (top), Influence Functions

(IF ) at F = (middle) and Change- of- variance functions (CVF ) at F = (bottom ).

F or each r , IF and CVF are bounded, and CVF with r = 5 looks similar to the CVF of

the logistic likelihood estimator . F igure 2 displays * ( gross - error - sensitivity ), *

(change- of- variance sensitivity ) and eff iciency (asymptotic efficiency ) of r for

r (0 , 5] at F = . It can be said that when r is moderate, an M - estimator by r is

both V - robust and B - robust . When r is 1.6, 3.3, eff iciency is about 0.9, 0.99,

respectively , and it will converge to 1 as r increases . Both * and * are going

upward to , but minimized near r = 1.5, which would be a good choice for r .

3 . E f f i c i en cy : We compare the proposed r with some of the well- known

redescending M - estimating functions (T able 1) as Hampel, et al. (pp. 166 - 167, 1986).
T he asymptotic efficiency of the proposed estimator at the standard normal distribution
is little higher than or approximately equal to those of the other estimators except
Huber - estimator . T he asymptotic variances of the proposed estimator under various
distributions are smaller than those for the other est im ator s ex cept the v ariance of

Huber - est im at or under 5%3N . W e hav e simulated set s of ob serv ation s an d calculat ed th e

estim ates for t w o represent ativ e M - estim at ion fun ct ion s ; Huber ' s , Biw eight ; an d th e

est im at es by the funct ion proposed in this ar t icle. 500 sam ples of 20 an d 40 ob serv ation s

are sim ulat ed for v ariou s dist r ibut ion s list ed in T able 1, asym ptotic efficien cies and

v arian ces are recorded. T he sim ulat ed statist ics display s th e sim ilar pat tern t o the

theoret ical v alues in T able 1, ex cept the case of Cauchy dist r ibution .

4 . S t ab len e s s : W e also sim ulat ed 500 set s of 20 an d 40 ob serv at ion s from

0 .5N ( 0 , 1) + 0 .25N ( - 5 , 1) + 0 .25N (5 , 1) , th at is , alm ost half of sim ulated ob serv ation s

b elow - 4 or ab ov e +4. W e calculat ed Huber ' s estim ates , th e est im at es by u sing the

Biw eight and the est im ates by the proposed function . T hose three fun ct ion s are th e

sam e function s as w e u sed in th e abov e sim ulat ion ; Huber ' s w ith b = 1.4088 , Biw eight

w ith r = 4 , and th e proposed fun ct ion w ith r = 1 .9388 . T he v arian ces for Huber '

est im at es are 1.3730 ( n =20) and 1.4827 (n=40); those for th e proposed estim ates are

1.0869 (n =20) and 1.2981(n=40), w hile 3.6291 (n =20) an d 2.4543(n =40) for the Biw eight .

T he v alues for Biw eight are alm ost double com pare t o those for the proposed funct ion .

Since the Biw eight funct ion becom es 0 out side (- 4, 4), w hile the proposed fun ct ion is

slow ly decay but n ev er becom es 0, the proposed fun ction produced m ore st able

est im at es than Biw eight funct ion .

3 . Conclu s ion s

W e proposed a n ew redescen ding type of M - est im ating funct ion induced by m inim izing
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L 2 dist ance bet w een a norm al den sity and a Gau ssian kernel den sity est im ator . T his

n ew ly proposed M - est im at in g funct ion is ev ery w here differ entiable w hile it is

r edescending , and it has been show n that estim at or s by the new M - estim ating fun ction

perform b ett er than exist in g M - est im ator s in term s of robu stn ess , efficien cy and

com putation al stablen ess under v ariou s dist r ibut ion s .

F igure 1: r (t op ), IF (m iddle ) and CVF (bott om )
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Figure 2: * , * , and eff iciency

T able 1: Comparison of Some Redescending M - estimator s

Asymptotic Variances

Estimator efficiency 5%3N 10%10N t3 25%3N Cauchy

Sine 0.9093 1.1991 1.2691 1.5769 1.7687 2.2688

Huber - Collins 0.9107 1.1966 1.2689 1.5581 1.7583 2.2591

T hree- Part 0.9119 1.1954 1.2662 1.5783 1.7603 2.3306

T anh 0.9205 1.1866 1.2590 1.5625 1.7579 2.2977

Scaled- logistic

MLE
0.9344 1.1872 1.4624 1.5380 1.7989 2.6390

Huber 0.9563 1.1649 1.4385 1.5663 1.7877 2.7890

n =20 0.8879 1.2063 1.4129 1.5848 1.8338 3.9073

n =40 0.9514 1.1330 1.5215 1.5225 1.8216 3.7798

Biweight 0.9100 1.1978 1.2683 1.5708 1.7645 2.2593

n =20 0.7849 1.2660 1.3046 1.6716 1.7322 3.2951

n =40 0.8953 1.1834 1.3249 1.6160 1.8080 2.7647

Proposed 0.9344 1.1709 1.2491 1.5279 1.7360 2.2498

n =20 0.8502 1.2015 1.2721 1.5950 1.7488 3.3522

n =40 0.9341 1.1303 1.2931 1.5319 1.7961 2.8858

T he figures in this table except the ones for `Proposed estimator ' are as same as those in

T able 3 on p.167 of Hampel et al. (1986). All estimators satisfy
*

= 1.6749 at the standard

normal distribution, where also the asymptotic efficiency is evaluated. T he estimators under study

are the following : sine, ( t) = s in (x / a) for |x | < a and zero otherwise, with a =1.142; biweight ,
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(x ) = x ( r
2

- x
2
)

2
for |x | < r and zero otherwise, with r=4; Huber - collins , p =1.277, x 1 =1.344, r=4;

three- part redescending, bends at 1.31, 2.039, 4; t anh- estimator , r=4, k =3.732, p =1.312, A =0.667,

B =0.783; Huber - estimator ; bends at b=1.4088; nd scaled logistic M LE ,

(x ) = [ ex p (x / a) - 1]/ [ ex p (x / a) + 1] with a=1.036; the proposed estimator , r=1.9388. T he

abbreviation % N stands for the distribution ( 1 - / 100) (x ) + ( / 100) (x / ) and t 3 is the t

distribution with 3 degrees of freedom and Cauchy is the Cauchy distribution with 0 (location) and
1 (scale).
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