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Abstract

A new redescending M-estimating function is introduced. The estimators by
this new redescending function attain the same level of robustness as the
existing redescending M -estimators, but have less asymptotic variances than
others except few cases. We have focused on estimating a location parameter,
but the method can be extended for a scale estimation.
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1. Introduction

Redescending M -estimators have ¢ functions which are nondecreasing near the origin
but then decrease toward the axis as they go far from the origin. They usually satisfy
¢(x) =0 for all x with [x|=r, r is a finite number which may be considered as the
minimum rejection point. They were very successful in the Princeton Robustness Study
(Andrews, et al., 1972). There are many representative redescending functions:
three-part redescending function (Andrews, et al., 1972), sine function (Andrews, et al,
1972), biweight function (Beaton and Tukey, 1974), Tanh function (Andrews, et al., 1972).

New redescending function is based on minimization of L , distance of a model
density and its density estimator. Let g , be a family of probability densities indexed by

6. The minimum distance estimator @ is defined by a statistical quantity minimizing
L , distance, which is a solution toL ,

Vo [(p(x) - g o(x))7dx, &)

where we assume p(x),g s(x) €L ,and Vv , represents a derivative with respect to
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[+ 9400)v @ 4(x) dx = 0. @
4. The equation (1) can be written as

Since we have fg d(X)V @ o(X)dx= (U2) Vv ﬁfg é(x)dx: 0, if 6 is a location

parameter, the equation (2) becomes
[P0V @ ox)dx= v 4 [p(x)g (x)dx= 0. ®)
Given a random sample, X ,,X ,,---,X ,, having a density g ,(x), let p(x) be a

I X- X .
density estimator for g 4(x) such as p(x) = —r% Zl—ﬁK (—h) where K( ) is a

kernel and h is the window width (Silverman, 1986). The equation (3) can be written

as
Sy [+« X" XY (x)dx = 0
=1 ¢ h ( h ) ¢ B '
If we follow Huber (1981), and if we denote T, as an estimate of 4, we have

ST 0= v o [ C P o

6= T,

Suppose a kernel is a Gaussian and a model is the norma with mean g and variance

o°, then f(l/h)K{(x- X )/h}g ,(x)dx, a convolution of a Gaussian kernel and a

norma density, is the normal with mean x and variance h*+ ¢°. After dropping
unnecessary —constants, we have

JX 3T )= (X - dexpl- (X - @H2(h* NI
u=T,
Proposed Function: Redefine ¢-function as
¢.(t)= texp[- t42r°] for te(- o0, 0), @)

where r is a tuning constant.
We propose for generality to redefine the ¢ ,(t) with r as a tuning constant. The

¢ () is originally derived based on normal density, but in the section we will show
that it works quite well for data sampled from not only normal distribution but also
other distributions. One may consider r as a function of h and ¢ rather than just a

constant, and try to find a proper value of r by replacing h and ¢ by proper
estimators. There are a lot of things to talk about this idea, but this time we would like
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to have a function similar to the existing functions, which are controlled by constants
like tuning constant, trimming constant or bending constant.

2. Properties of the proposed function

1. Shape: For a given finite constant c¢>0, the class of redescending functions ¥,
consists of al mappings ¢: R — R satisfying

» ¢ is continuous on R, ¢(- t)=- ¢(t) for al t, and ¢(t)=0 for t=0;

» the set D(¢) of points in which ¢' is not defined or not continuous is finite;

» ¢(t)=0 for |tj=c.

The ¢, in (4) satisfies the condition 1 and 2. Though it does not fully satisfy the

condition 3, it is basically redescending (Figure 1). Since the propose ¢, function is

slowly decaying but never becomes 0, we can avoid some computational problems
mentioned by Huber (1981, p103) and Hampel, et a. (1986, p152), while it can
effectively handle extreme outliers like the other redescending M -estimating functions.

Note that the estimates we got in actual calculations are so called one-step
M - estimates
which are defined by

S, 2 4((x,- TS,

To= T+ —3
204 ((xi- Ti7/Sy)

where the initial estimates of location T !© is the median of the observations
X1, ,Xp, and S,=1.483 med {|x;- med;(x;)}. In the process of getting one- step
M-estimates, we are not going to have 'O' in denominator, which could cause
'‘overflow' during  computation, so that the proposed ¢ ,(t) produces very stable
estimates compare to the other redescending M -estimating functions. The function ¢,
deals various M -estimating functions from a redescending function to a non-decreasing
¢(t)=t according to r. When r is infinite, we have ¢(t)=1t for al t, which
produces (non-robust, but most efficient) least-squares estimators. Of course, if r is
moderate, the propose ¢ ,(t) plays like a redescending M -estimating function. With a
proper value of r, we can have the ¢ (t) which produces the estimator as efficient as
least squares estimator while we keep reasonable level of robustness.
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2. Robustness: Figure 1 displays ¢, with r=2 and 5 (top), Influence Functions
(IF) a&a F = @ (middle) and Change-of-variance functions (CVF) at F = @ (bottom).
For each r, IF and CVF are bounded, and CVF with r =5 looks similar to the CVF of
the logistic likelihood estimator. Figure 2 displays 7 ( gross-error-sensitivity), x
(change- of-variance sensitivity) and dficiency (asymptotic efficiency) of ¢, for
r(0,5] aa F= @. It can be said that when r is moderate, an M-estimator by ¢, is
both  V-robust and B-robust. When r is 16, 3.3, dficiency is about 0.9, 0.99,
respectively, and it will converge to 1 as r increases. Both ¥  and x are going
upward to oo, but minimized near r= 1.5, which would be a good choice for r.

3. Efficiency : We compare the proposed ¢, with some of the well-known

redescending M -estimating functions (T able 1) as Hampel, et al. (pp. 166 - 167, 1986).
The asymptotic efficiency of the proposed estimator at the standard normal distribution
is little higher than or approximately equal to those of the other estimators except
Huber- estimator. The asymptotic variances of the proposed estimator under various
distributions are smaller than those for the other estimators except the variance of
Huber-estimator under 5%3N. We have simulated sets of observations and calculated the
estimates for two representative M -estimation functions; Huber's, Biweight; and the
estimates by the function proposed in this article. 500 samples of 20 and 40 observations
are simulated for various distributions listed in Table 1, asymptotic efficiencies and
variances are recorded. The simulated statistics displays the similar pattern to the
theoretical values in T able 1, except the case of Cauchy distribution.

4. Stableness : We also simulated 500 sets of 20 and 40 observations from
0.5N(0,1) + 0.25N(- 5,1) + 0.25N (5, 1), that is, almost half of simulated observations
below -4 or above +4. We calculated Huber's estimates, the estimates by using the
Biweight and the estimates by the proposed function. Those three functions are the
same functions as we used in the above simulation; Huber's with b= 1.4088, Biweight
with r= 4, and the proposed function with r= 1.9388. The variances for Huber’
estimates are 13730 (n=20) and 14827 (n=40); those for the proposed estimates are
1.0869 (n=20) and 1.2981(n=40), while 3.6291 (n=20) and 2.4543(n=40) for the Biweight.
The values for Biweight are almost double compare to those for the proposed function.
Since the Biweight function becomes 0 outside (-4, 4), while the proposed function is
slowly decay but never becomes 0, the proposed function produced more stable
estimates than Biweight function.

3. Conclusions

We proposed a new redescending type of M -estimating function induced by minimizing
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L , distance between a normal density and a Gaussian kernel density estimator. This

newly proposed M -estimating function is everywhere differentiable while it is
redescending, and it has been shown that estimators by the new M -estimating function
perform better than existing M-estimators in terms of robustness, efficiency and
computational stableness under various distributions.

Figure 1: ¢, (top), IF (middle) and CVF (bottom)
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Figure 2: y', » , and eficiency
Table 1: Comparison of Some Redescending M - estimators
Asymptotic Variances
Estimator efficiency 5%3N 10%10N ts 25%3N Cauchy
Sine 0.9093 1.1991 1.2691 15769 1.7687 2.2688
Huber - Callins 09107 1.1966 1.2689 15581 1.7583 2.2591
T hree- Part 09119 1.1954 1.2662 15783 1.7603 2.3306
Tanh 0.9205 1.1866 1.2590 15625 1.7579 2.2977
Scaled- logistic
MLE 0.9344 1.1872 14624 15380 1.7989 2.6390
Huber 0.9563 1.1649 14385 15663 1.7877 2.7890
n=20 0.8879 1.2063 14129 15848 18338 3.9073
n=40 09514 1.1330 15215 15225 18216 3.7798
Biweight 0.9100 1.1978 1.2683 15708 1.7645 2.2593
n=20 0.7849 1.2660 1.3046 16716 17322 3.2951
n=40 0.8953 1.1834 1.3249 16160 1.8080 2.7647
Proposed 0.9344 1.1709 12491 15279 1.7360 2.2498
n=20 0.8502 1.2015 12721 15950 1.7488 3.3522
n=40 09341 1.1303 1.2931 15319 1.7961 2.8858

The figures in this table

Table 3 on p.167 of Hampel et al. (1986). All estimators satisfy 7/* =
normal distribution, where also the asymptotic efficiency
are the following: sine, ¢(t)= sin(x/a) for

except

are as same as those in
16749 at the standard
is evaluated. T he estimators under study
with a =1.142; biweight,

the ones for ‘Proposed estimator'

X|<ma and zero otherwise,
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d(x) = x(rz- xz)2 for [x|<r and zero otherwise, with r=4; Huber-callins, p=1.277, x ,=1.344, r=4;
three- part redescending, ¢ bends at 131, 2039, 4; tanh-estimator, r=4, k=3.732, p=1.312, A =0.667,
B =0.783; Huber - estimator ; ¢ bends at b=1.4088; nd scaled logistic MLE,
¢(x)= [exp(x/a) - 1]/[exp(x/a)+ 1] with a=1.036; the proposed estimator, r=19388. The
abbreviation «%/SN stands for the distribution (1- «/100) @(x) + (a/ 100)@(x/B) and t; is the t

distribution with 3 degrees of freedom and Cauchy is the Cauchy distribution with O (location) and
1 (scae).
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