DOI QR코드

DOI QR Code

The Kinetics of Radical Copolyerization of ${\alpha}$-Methylstyrene with Acrylonitrile in a CSTR

연속반응기에서 ${\alpha}$-Methylstyrene과 Acrylonitrile 라디칼 공중합 속도론

  • Kim, Nam-Seok (Dept. of Chemical Technology, Changwon National University) ;
  • Park, Keun-Ho (Dept. of Chemical Technology, Changwon National University)
  • 김남석 (창원대학교 회공시스템공학과) ;
  • 박근호 (창원대학교 회공시스템공학과)
  • Published : 2002.03.31

Abstract

Copolymerization of ${\alpha}$-Methylstyrene(AMS) with Acrylonitrile(AN) was carried out with benzoylperoxide(BPO) as an initiator in toluene at $80^{\circ}C$ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3 hours, respectively. The monomer reactivity ratios, $r_{AMS}$ and $r_{AN}$ determined by both the Kele$T{\"{u}}d\"{o}s$ method and the Fineman-Ross method were $r_{AMS}$=0.16(0.14), $r_{AN}$=0.04(0.06). The cross-termination factor ${\Phi}$ of the copolymer over the entire AMS composition ranged from 0.75 to 0.92. The ${\Phi}$ factors of poly(AMS-co-AN) were increased with increasing AMS content. The simulated conversions and copolymerization rates were compared with the experimental results. It was observed that the average time to reach dynamic steady-state was three times the residence time.

Keywords

References

  1. E. J. Vanderbeng and J. C. Salamone, ACS Symposium Series-Catalysis in Polymer Synthesis, Maple Press, York, PA (1992)
  2. M. C. Gupta and J. D. Nath, AppI. Polym. Sci., 25, 1017 (1980) https://doi.org/10.1002/app.1980.070250604
  3. S. Das and F. Rodhguez, J. AppI. Poly. Sci., 39, 1309 (1990) https://doi.org/10.1002/app.1990.070390609
  4. S. Das and F. Rodriguez, J. AppI. Poly. Sci., 32, 5981 (1986) https://doi.org/10.1002/app.1986.070320726
  5. J. C. Pinto and W. H. Ray, Chem. Eng. Sci., 50, 715 (1995) https://doi.org/10.1016/0009-2509(94)00456-2
  6. J. C. Pinto, Chem. Eng. Sci., 50, 3455 (1995) https://doi.org/10.1016/0009-2509(95)00163-Y
  7. S. Kipahssides, Chem Eng. Sci., 51, 163 (1996)
  8. M. Morimoto. J. Appl. Polym Sci., 26, 261 (1981) https://doi.org/10.1002/app.1981.070260124
  9. M. Morimoto, H. Horiike, and M. Furuta, U. S, Patent 3,904,709 (1975)
  10. M. Mohmoto, H. Horiike, and T. Oyamada, U. S. Patent 3,984,496 (1976)
  11. Y. O. Seo, N. S. Kim, and S. D. Seul, J. Ind Eng. Chem., 6, 174 (2000)
  12. N. S. Kim, S. D. Seul, Y. E. Cheong, K. H. Park, and J. J. Choi, J. Ind Eng. Chem, 10, 796 (2000)
  13. T. Kelen and F. Tudos, J. MacromoI Sci., Chem, A9, 1 (1975)
  14. M. Finneman and S. D. Ross, J. PoIym. Sci., 66, 1594 (1944)
  15. K. Ito, J. Polym. Sci., Part-Al, 9, 867 (1971) https://doi.org/10.1002/pol.1971.150090403
  16. C. Simionescu and S. loan, J. MacromoI Sci., Chem, A22 (1985)
  17. J. C. Pinto and W. H. Ray, Chem. Eng. Sci., 50, 715 (1995) https://doi.org/10.1016/0009-2509(94)00456-2
  18. J. C. Pinto Chem. Eng. Sci., 50, 3455 (1995) https://doi.org/10.1016/0009-2509(95)00163-Y
  19. S. Kiparissides, Chem. Eng. Sci., 51, 163 (1996)
  20. H. S. Fogker, 'Elements of chemical Reaction Engineering' , Chap. 5. Prentice-Hall, Englewood Cliffs, NJ (1986)
  21. J. Brandrup and E. H. Immergut, ' Polymer Handbook, ' 3rd. ed., John Wiley & Sons Inc., USA (1989)
  22. C. Walling, 'Free Radicals in Solution' , Chap. 4, Wiley, New York (1957)
  23. K. Ito, J. Polym. Chem Ed, 16, 2725 (1978) https://doi.org/10.1002/pol.1978.170161033
  24. A. M. North, PoIym. 4. 134 (1963)
  25. J. N. Atherton and A. M. North, Trans, Faraday. Soc, 58. 2049 (1962) https://doi.org/10.1039/tf9625802049
  26. P. Wittmer, Macromol. Chem. SuppI, 3, 129 (1979)