DOI QR코드

DOI QR Code

연속공정에 의한 식물유의 바이오디젤유 전환

Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process

  • 현영진 (제주대학교 공과대학 청정화학공학과) ;
  • 김혜성 (명지대학교 공과대학 화학공학과)
  • Hyun, Young-Jin (Department of Chemical Engineering & Clean Technology, Cheju National University) ;
  • Kim, Hae-Sung (Department of Chemical Engineering, Myongji University)
  • 발행 : 2002.12.31

초록

Transesterfication of vegetable oils and methanol with alkaline catalyst was carried out to produce biodiesel fuel by continuous process. The process consists of two static mixers, one tubular reactor and two coolers and gave $96{\sim}99$% of methyl ester yield from soybean oil and rapeseed oil. Experimental variables were the molar ratios of methanol to vegetable oil, alkaline catalyst contents, flow rates, mixer element number. The optimum ranges of operating variables were as follows; reaction temperature of $70^{\circ}C$, l:6 of molar ratio of methanol to oil, O.4%(w/w) sodium hydroxide based on oil, static mixer elements number of 24 and 4 min. residence time.

키워드

참고문헌

  1. H. Fukuda, A. Kondo, and H. Nods, J. of Bioscience & BiotechnoIogy, 92, 405 (2001)
  2. J. B. Williams, Eur. J. Lipid Sci. TechnoI, 104, 361 (2002) https://doi.org/10.1002/1438-9312(200206)104:6<361::AID-EJLT361>3.0.CO;2-9
  3. W. Korbitz, Renewable Energy. 16, 1078 (1999) https://doi.org/10.1016/S0960-1481(98)00406-6
  4. M, S. Graboski and R. L. McCormick, Prog. Energy Combust. Sci., 24, 125 (1998) https://doi.org/10.1016/S0360-1285(97)00034-8
  5. A. Srivastava and R. Prasad, Renewable & Sustainable Energy Reviews, 4, 111(2000) https://doi.org/10.1016/S1364-0321(99)00013-1
  6. F. Ma and M. A. Hanna, Bioresource Technology, 70, 1 (1999) https://doi.org/10.1016/S0960-8524(99)00025-5
  7. D. Bartholomew, JAOCS, 58, 286 (1981) https://doi.org/10.1007/BF02541575
  8. C. E. Goering and B. Fry, JAOCS, 61, 1627 (1984) https://doi.org/10.1007/BF02541647
  9. A. W. Schwarb, G. J. Dykstra, E. Selke, S. C. Sorenson, and E. H. Pryde, JAOCS, 65, 1781 (1988) https://doi.org/10.1007/BF02542382
  10. X. Lang, A. K. Dalai, N. N. Bakhshi, M. J. Reaney, and P. B. Hertz, Bioresource Technology, 80, 53 (2001) https://doi.org/10.1016/S0960-8524(01)00051-7
  11. H. Noureddini, D. Harkey, and V. Medikonduru, JAOCS,75, 1775 (1998) https://doi.org/10.1007/s11746-998-0331-1
  12. D. Darnoko and M. Cheryan, JAOCS, 77, 1269 (2000) https://doi.org/10.1007/s11746-000-0199-x
  13. J. Connemann, A. Krallmann, and E. Fischer, U.S. Patent 5,354,878 (1994)
  14. K. Komers, J. Machek, and R. Stloukal, Eur. J. Lipid Sci. TechnoI., 103, 359 (2001) https://doi.org/10.1002/1438-9312(200106)103:6<359::AID-EJLT359>3.0.CO;2-K
  15. F. Ma, D. Clements, and M. A. Hanna, Bioresource Technology, 69, 289 (1999) https://doi.org/10.1016/S0960-8524(98)00184-9
  16. M. Bender, Bioresource Technology, 70, 81 (1999) https://doi.org/10.1016/S0960-8524(99)00009-7
  17. E. W. Eckey, JAOCS. 33, 575 (1956) https://doi.org/10.1007/BF02638493
  18. D. Nimcevic, R. Puntigam, M. Worgetter, and J. R. Gapes, JAOCS. 77, 275 (2000) https://doi.org/10.1007/s11746-000-0045-1
  19. B, Freedman, E. H Pryde, and T. L. Mounts, JAOCS, 61, 1638 (1984) https://doi.org/10.1007/BF02541649
  20. R. Praveen, S. Muniyappa, C. Scott, and H. Noureddimi, Bioresource Technology, 56,19 (1996) https://doi.org/10.1016/0960-8524(95)00178-6
  21. J. M. Encinar, J. F. Gonzalez, E. Sabio, and M. J. Ramiro, Ind. Eng. Chem. Res., 38, 2927 (1999) https://doi.org/10.1021/ie990012x