Intracellular Invasion of Staphylococcus aureus against Human Gingival Fibroblasts

The purp상구균의 인체 치은 섬유모 세포에 대한 세포내 침입

  • Kim, Kang-Ju (Department of Oral Microbiology, College of Dentistry, Wonkwang University) ;
  • Jung, Kyu-Yong (Department of Pharmacology, College of Medicine, Wonkwang University)
  • 김강주 (원광대학교 치과대학 구강미생물학교실) ;
  • 정규용 (원광대학교 의과대학 약리학교실)
  • Published : 2002.09.30

Abstract

황색 포도상구균은 급성 구강 감염에 있어서의 병원균이다. 그러나 그러한 황색 포도상구균의 병원성 기전은 완전히 이해되지 않았다. 이전 실험에서 황색 포도상구균의 단백질 A와 골격근의 액틴 필라멘트는 인체 상피 세포로의 황색 포도상구균의 침입에 관여한다. 구강 내 감염에 있어서의 황색 포도상구균의 병원성 기전을 조사하기 위해 인체의 치은 섬유모 세포에 대한 침입이 연구되고 있다. 급성 구강 감염을 가진 환자로부터 분리된 ATCC 25923 황색 포도상구균과 OPT 2 황색 포도상구균의 침입은 시간(0-120분)에 의존한다는 사실을 밝혀냈다. 60분을 초과하는 배양시간은 다시 배양된 균집락수 증가를 가져왔다. 배지에 접종한 세균의 숫자가 증가할 때 (100?10,000,000 cfu/ml/well), 직선적으로 증가한다. 단백질 A가 결핍된 Wood 46 황색 포도상구균의 침입은 단백질 A가 발현된 균주(ATCC 25923과 OPT 2)의 침입보다 훨씬 낮았다. 액틴 필라멘트의 합성을 방해하는 Cytochalasin D는 인체 치은 섬유모세포로 황색 포도상구균 (ATCC 25923과 OPT 2)이 침입하는 것을 방해한다. 이러한 결과는 구강내 감염을 일으키는 황색 포도상구균의 병원성 기전이 세포내 침입에 관여하고, 황색 포도상구균 단백질 A와 골격근의 액틴 필라멘트가 인체 치은 섬유모세포로의 황색 포도상구균의 침입 조절에 관여한다는 것을 보여준다.

Keywords

References

  1. Ellington JK, Reilly SS, Ramp WK, et el, Mechanisms of Staphylococcus aureus invasion of cultured osteoblasts. Microb Pathog 1999; 26(6) :317-3 https://doi.org/10.1006/mpat.1999.0272
  2. You YO, Kim KJ, Min BM, et el, Staphylococcus lugdunensis- a potential pathogen in oral infection. Oral Surg Oral Med Oral Pathal Oral Radiol Endod 1999; 87: 297-302
  3. Barie PS. Antibiotic-resistant gram-positive cocci: implications for surgical practice. World J Surg 1998; 22(2): 118-26 https://doi.org/10.1007/s002689900359
  4. Bayles KW., Wesson CA, Liou LE, et el, Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 1998; 66(1): 336-42
  5. Younessi OJ, Walker DM, Ellis P, et al, Fatal Staphylococcus aureus infective endocarditis: the dental implications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85(2): 168-72 https://doi.org/10.1016/S1079-2104(98)90421-8
  6. Staat RH, Van Stewart A, Stewart JF. MRSA: an important consideration for geriatric dentistry practitioners. Spec Care Dentist 1991; 11(5): 197-9 https://doi.org/10.1111/j.1754-4505.1991.tb01730.x
  7. Schuster GS, Burnett GW. The microbiology of oral and maxillofacial infections. In: Management of infections of the oral and maxillofacial regions. Topazian RG, Goldberg MG I editors. Philadelphia: Saunders, 1981: 457-72
  8. Hensen SM, Pavicic MJ, Lohuis JA, et al, Use of bovine primary mammary epithelial cells for the comparison of adherence and invasion ability of Staphy lococcus aureus strains. J Dairy Sci 2000; 83(3): 418-29 https://doi.org/10.3168/jds.S0022-0302(00)74898-3
  9. Lammers A, Nuijten PJ, Kruijt E, et al, Cell tropism of Staphylococcus aureus in bovine mammary gland cell cultures. Vet Microbiol 1999; 67(2): 77-89 https://doi.org/10.1016/S0378-1135(99)00018-8
  10. Lammers A, Nuijten PJ, Smith HE. The fibronectin binding proteins of Staphylococcus aureus are required for adhesion to and invasion of bovine mammary gland cells. FEMS Microbiol Lett 1999; 180(1): 103-9 https://doi.org/10.1111/j.1574-6968.1999.tb08783.x
  11. Joh D, Wann ER, Kreikemeyer B, et al, Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol 1999; 18(3): 211-23 https://doi.org/10.1016/S0945-053X(99)00025-6
  12. Almeida RA, Matthews KR, Cifrian E, et al, Staphylococcus aureusinvasion of bovine mammary epithelial cells. J Dairy Sci 1996; 79(6): 1021-6 https://doi.org/10.3168/jds.S0022-0302(96)76454-8
  13. Schechter LM, Lee CA. Related Articles Salmonella invasion of non-phagocytic cells. Subcell Biochem 2000; 33: 289-320
  14. Cudmore S, Cossart P, Griffiths G, et al, Actinbased motility of vaccinia virus, Nature 1995; 378: 636-8 https://doi.org/10.1038/378636a0
  15. Lasa I, Cossart P. Actin-based bacterial motility. towards a definition of the minimal requirements. Trends Cell Biol 1996; 6: 109-14 https://doi.org/10.1016/0962-8924(96)81001-4
  16. Lasa I, Gouin E, Goethals M,et el, Identification of two regions in the N-terrninal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J 1997; 16: 1531-40 https://doi.org/10.1093/emboj/16.7.1531
  17. Blumberg EA, Hatcher VB, Lowy FD, Acidic fibroblast growth factor modulates Staphylococcus aureus adherence to human endothelial cells. Infect Immun 1998; 56: 1470-4.
  18. Vann JM, Proctor RA. Ingestion of Staphylococcus aureus by bovine endothelial cells results in time- and dose-clependent damage to endothelial cell monolayers. Infect Immun 1987: 55: 2155-63
  19. Hudson MC, Ramp WK, Nicholson NC, et el, Internalization of Staphylococcus aureus by cultured osteoblasts. Microb Pathog 1995; 9: 409-19
  20. Jung KY, Cha JD, Lee SH, et al, Involvement of staphylococcal protein A and cytoskeletal actin n Staphylococcus aureus invasion of cultured human oral epithelial cells. J Med Microbial 2001; 50(1): 35-41 https://doi.org/10.1099/0022-1317-50-1-35
  21. Falkow S, Isberg RR, Portnoy DA. The interaction of bacteria with mammalian cells. Cell Biol 1992; 8: 333-63 https://doi.org/10.1146/annurev.cb.08.110192.002001
  22. Totora GJ, Funk BR, Case CL. Microbiology-an introduction. 7th ed, California: Benjamin/Cummings, 1997: 435-53
  23. BuxtonTB, Rissing JP, Homer JA, et al, Binding of Staphylococcus aureusbone pathogen to type I collagen. Microb Pathog 1990; 8: 441-8 https://doi.org/10.1016/0882-4010(90)90031-K
  24. Meyer DH, Sreenivasan PK, Fives-Taylor PM. Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans. Infect Immunl 1991; 59: 2719-26
  25. Oho T, Yu H, Yamashita Yet al, Binding of salivary glycoprotein secretory IgA complex to the surface protein antigenof Streptococcus mutans. Infect Immunl 1998; 66: 115-21
  26. Oho T, Yu H, Yanmashita Y, et al. Binding of salivary glycoprotein-secretory immunoglobulin A complex to the surface protein antigen of Streptococcus mutans. Infect Immun 1998; 66: 115-21
  27. Shuter J, Hatcher VB, Lowy FD. Staphylococcus aureus binding to human nasal mucin. Infect Immun1996; 64: 310-8
  28. Vaudaux P, Suzuki R, Waldvogel FA, et al, Foreign body infection: role of fibronectin as a ligand for the adherence of Staphylococcus aureus. J Infect Dis 1984; 150: 546-53 https://doi.org/10.1093/infdis/150.4.546
  29. Cha JD, Lee SH, Jung KY, er al, Characteristics of adherence and invasion of Staphylococcus lugdunensis to human oral epithelial cells. International J Oral Biol 1999; 24(2): 69-74
  30. Smith GA, Portnoy DA, Theriot JA. Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actinbased motility. Mol MicrobioI 1995; 17: 945-51 https://doi.org/10.1111/j.1365-2958.1995.mmi_17050945.x
  31. Paulsson M, Petersson AC, Ijungh A, Serumand tissue protein bindingand cell surface properties of Staphylococcus lugdunensis. J Med Microbiol 1993; 38: 96-102 https://doi.org/10.1099/00222615-38-2-96
  32. Vercellotti GM, McCarthy]B, Lindholm P, et al, Extracellular matrix proteins (fibronectin, laminin, and type IV collagen) bind and aggregate bacteria, Am, J Pathol 1985; 120: 13-21
  33. Eliasson M, Olsson A, Palmcrantz E, et sl, Chimeric IgG-binding receptors engineered from staphylococcal protein A and staphylococcal protein G. J Biol Chem 1998; 263: 4323-7
  34. Toyama S. Functional alterations in, $\beta$actin from a KB cell mutant resistant to cytochalasin B. J Cell Biol 1998; 107: 1499-504 https://doi.org/10.1083/jcb.107.4.1499
  35. Welch MD, Iwamatsu A, Mitchison TJ. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monoeytogenes. Nature 1997; 385: 265-9 https://doi.org/10.1038/385265a0
  36. Murai M, Seki K, Sakurada J, et al, Effects of cytochalasin B and D on Staphylococcus aureus adherence to and ingestion by mouse renal cells from primary culture. Microbiol Immunol 1993; 37: 69-73 https://doi.org/10.1111/j.1348-0421.1993.tb03181.x
  37. Goldberg MB, Theriot JA. Shigella flexneri surface protein IcsA is sufficient to direct actinbased motility. Proc Natl Acad Sci USA 1995; 92: 6572-6 https://doi.org/10.1073/pnas.92.14.6572
  38. Heinzen RA, Hayes SF, Peacock MG, et al, Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells, Infect Immun 1993; 61: 1926-35
  39. Ewanowich CA, Melton AR, Weiss AA, et al, Invasion of HeLa 229 cells by virulent Bordetella pertussis. Infect Immun 1989; 57: 2698-704