DOI QR코드

DOI QR Code

Point interpolation method based on local residual formulation using radial basis functions

  • Liu, G.R. (Center for Advanced Computation in Engineering Science, Department of Mechanical and Production Engineering, National University of Singapore) ;
  • Yan, L. (Center for Advanced Computation in Engineering Science, Department of Mechanical and Production Engineering, National University of Singapore) ;
  • Wang, J.G. (Center for Advanced Computation in Engineering Science, Department of Mechanical and Production Engineering, National University of Singapore) ;
  • Gu, Y.T. (Center for Advanced Computation in Engineering Science, Department of Mechanical and Production Engineering, National University of Singapore)
  • 투고 : 2001.12.28
  • 심사 : 2002.11.13
  • 발행 : 2002.12.25

초록

A local radial point interpolation method (LRPIM) based on local residual formulation is presented and applied to solid mechanics in this paper. In LRPIM, the trial function is constructed by the radial point interpolation method (PIM) and establishes discrete equations through a local residual formulation, which can be carried out nodes by nodes. Therefore, element connectivity for trial function and background mesh for integration is not necessary. Radial PIM is used for interpolation so that singularity in polynomial PIM may be avoided. Essential boundary conditions can be imposed by a straightforward and effective manner due to its Delta properties. Moreover, the approximation quality of the radial PIM is evaluated by the surface fitting of given functions. Numerical performance for this LRPIM method is further studied through several numerical examples of solid mechanics.

키워드

참고문헌

  1. Atluri, S.N. and Zhu, T.A. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computationalmechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
  2. Atluri, S.N., Kim, H.G. and Cho, J.Y. (1999), "A critical assessment of the truly Meshless Local Petrov-Galerkin(MLPG), and Local Boundary Integral Equation (LBIE) methods", Comput. Mech., 24, 348-372. https://doi.org/10.1007/s004660050457
  3. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Num. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, O. (1996), "Meshless methods: An overviewand recent developments", Comput. Meth. Appl. Mech. Eng., 139, 3-47. https://doi.org/10.1016/S0045-7825(96)01078-X
  5. Franke, R. (1982), "Scattered data interpolation: test of some method", Mathematics of Computation, 38(157),181-200.
  6. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonsphericalstars", Mon. Not. Roy. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
  7. Gu, Y.T. and Liu, G.R. (2002), "A boundary point interpolation method for stress analysis of solid", Comput.Mech., 28, 47-54. https://doi.org/10.1007/s00466-001-0268-9
  8. Liu, G.R. (2002a), "A point assembly method for stress analysis for two-dimensional solids", Int. J. SolidsStruct., 39, 261-276. https://doi.org/10.1016/S0020-7683(01)00172-X
  9. Liu, G.R. (2002b), MeshFree methods-Moving beyond the Finite Element Method, CRC Press, Boca Raton.
  10. Liu, G.R. and Gu, Y.T. (2001a), "A point interpolation method for two-dimensional solid", Int. J. Num. MethodsEng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
  11. Liu, G.R. and Yang, K.Y. (1998), "A penalty method for enforcing essential boundary conditions in element freeGalerkin method", Proceeding of the 3rd HPC Asia'98, Singapore, 715-721.
  12. Liu, G.R., Yang, K.Y. and Wang, J.G. (2000), "A constraint moving least square method in meshless methods",Submitted.
  13. Liu, G.R. and Yan, L. (2000), "Modified meshless local Petrov-Galerkin method for solid mechanics",Conference on computational mechanics in Los Anglos.
  14. Powell, M.J.D. (1992), The Theory of Radial Basis Function Approximation in 1990, Advances in NumericalAnalysis, Eds. FW. Light, 105-203.
  15. Schaback, R. (1994), Approximation of Polynomials by Radial basis Functions, Wavelets, Images and SurfaceFitting, (Eds. Laurent P.J., Mehaute Le and Schumaker L.L., Wellesley Mass.), 459-466.
  16. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw-Hill, New York.
  17. Wang, J.G. and Liu, G.R. (2002), "On the optimal shape parameters of radial basis functions used for 2-Dmeshlesss methods", Computer Methods in Applied Mechanics and Engineering, 191, 2611-2630. https://doi.org/10.1016/S0045-7825(01)00419-4
  18. Wendland, H. (1998), "Error estimates for interpolation by compactly supported radial basis functions of minimaldegree", J. Approximation Theory, 93, 258-396. https://doi.org/10.1006/jath.1997.3137
  19. Yan, L. (2002), "Development of meshless method in computational mechanics", National University ofSingapore, Thesis of M. Eng.

피인용 문헌

  1. Inverse analysis of heat transfer across a multilayer composite wall with Cauchy boundary conditions vol.79, 2014, https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.041
  2. A hybrid radial boundary node method based on radial basis point interpolation vol.33, pp.11, 2009, https://doi.org/10.1016/j.enganabound.2009.06.003
  3. Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics vol.37, pp.12, 2013, https://doi.org/10.1016/j.enganabound.2013.10.002
  4. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter vol.86, pp.4, 2008, https://doi.org/10.1016/j.compstruct.2008.07.025
  5. Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains vol.33, pp.4, 2017, https://doi.org/10.1002/num.22126
  6. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
  7. Local integration of 2-D fractional telegraph equation via moving least squares approximation vol.56, 2015, https://doi.org/10.1016/j.enganabound.2015.02.012
  8. A weighted nodal-radial point interpolation meshless method for 2D solid problems vol.39, 2014, https://doi.org/10.1016/j.enganabound.2013.11.007
  9. Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method vol.35, pp.9, 2011, https://doi.org/10.1016/j.apm.2011.02.039
  10. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity vol.3, 2016, https://doi.org/10.1016/j.mex.2016.03.001
  11. Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0482-x
  12. A boundary radial point interpolation method (BRPIM) for 2-D structural analyses vol.15, pp.5, 2003, https://doi.org/10.12989/sem.2003.15.5.535
  13. A sub-domain RPIM with condensation of degree of freedom vol.37, pp.9, 2013, https://doi.org/10.1016/j.enganabound.2013.04.014
  14. An element-free Galerkin approach for rigid–flexible coupling dynamics in 2D state vol.310, 2017, https://doi.org/10.1016/j.amc.2017.03.040
  15. A local radial point interpolation method for dissipation process of excess pore water pressure vol.15, pp.6, 2005, https://doi.org/10.1108/09615530510601468
  16. On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations vol.105, pp.2, 2016, https://doi.org/10.1002/nme.4960
  17. Analysis of the Time Fractional 2-D Diffusion-Wave Equation via Moving Least Square (MLS) Approximation vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0247-7
  18. MODIFIED CHOLESKY DECOMPOSITION FOR SOLVING THE MOMENT MATRIX IN THE RADIAL POINT INTERPOLATION METHOD vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500886
  19. More accurate results for two-dimensional heat equation with Neumann’s and non-classical boundary conditions vol.32, pp.4, 2016, https://doi.org/10.1007/s00366-016-0449-y
  20. Modeling vibration behavior of delaminated composite laminates using meshfree method in Hamilton system vol.36, pp.5, 2015, https://doi.org/10.1007/s10483-015-1933-7
  21. The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method vol.33, pp.6, 2009, https://doi.org/10.1016/j.enganabound.2009.01.001
  22. Local radial point interpolation method for the fully developed magnetohydrodynamic flow vol.217, pp.9, 2011, https://doi.org/10.1016/j.amc.2010.11.004
  23. Particle refining and coarsening method for smoothed particle hydrodynamics simulations vol.6, pp.1, 2013, https://doi.org/10.1088/1749-4699/6/1/015009
  24. Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping vol.312, 2016, https://doi.org/10.1016/j.jcp.2016.02.030
  25. A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals vol.110, pp.5, 2017, https://doi.org/10.1002/nme.5366
  26. Solving time-dependent engineering problems with multiquadrics vol.280, pp.3-5, 2005, https://doi.org/10.1016/j.jsv.2003.12.043
  27. Discrete differential operators on irregular nodes (DDIN) vol.88, pp.12, 2011, https://doi.org/10.1002/nme.3225
  28. Simulation of an extruded quadrupolar dielectrophoretic trap using meshfree approach vol.30, pp.11, 2006, https://doi.org/10.1016/j.enganabound.2006.03.014
  29. Numerical modeling of Forchheimer flow to a pumping well in a confined aquifer using the strong-form mesh-free method vol.22, pp.5, 2014, https://doi.org/10.1007/s10040-014-1136-y
  30. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations vol.29, pp.12, 2005, https://doi.org/10.1016/j.enganabound.2005.07.004
  31. A new dual reciprocity hybrid boundary node method based on Shepard and Taylor interpolation method and Chebyshev polynomials vol.73, 2016, https://doi.org/10.1016/j.enganabound.2016.08.015
  32. The elastoplastic formulation of polygonal element method based on triangular finite meshes vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.119
  33. Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation vol.130, pp.2, 2015, https://doi.org/10.1140/epjp/i2015-15033-5
  34. A meshfree radial point interpolation method (RPIM) for three-dimensional solids vol.36, pp.6, 2005, https://doi.org/10.1007/s00466-005-0657-6
  35. Local integration of population dynamics via moving least squares approximation vol.32, pp.2, 2016, https://doi.org/10.1007/s00366-015-0424-z
  36. Elastic dynamic analysis of moderately thick plate using meshless LRPIM vol.22, pp.2, 2009, https://doi.org/10.1016/S0894-9166(09)60096-3
  37. Meshless local radial point interpolation to three-dimensional wave equation with Neumann's boundary conditions vol.93, pp.12, 2016, https://doi.org/10.1080/00207160.2015.1085032
  38. Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations vol.89, 2014, https://doi.org/10.1016/j.oceaneng.2014.08.007
  39. Local Heaviside-weighted LRPIM meshless method and its application to two-dimensional potential flows vol.59, pp.5, 2009, https://doi.org/10.1002/fld.1810
  40. Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) vol.181, pp.4, 2010, https://doi.org/10.1016/j.cpc.2009.12.010
  41. Meshfree method for 3D bulk forming analysis with lower order integration scheme vol.28, pp.10, 2004, https://doi.org/10.1016/j.enganabound.2003.11.005
  42. An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov–Galerkin method vol.35, pp.7, 2011, https://doi.org/10.1016/j.enganabound.2011.02.006
  43. The analysis of composite laminated beams using a 2D interpolating meshless technique 2018, https://doi.org/10.1007/s10409-017-0701-8
  44. A new hybrid boundary node method based on Taylor expansion and the Shepard interpolation method vol.102, pp.8, 2015, https://doi.org/10.1002/nme.4861
  45. Stability and convergence of spectral radial point interpolation method locally applied on two-dimensional pseudoparabolic equation vol.33, pp.3, 2017, https://doi.org/10.1002/num.22119
  46. An improved meshless method for analyzing the time dependent problems in solid mechanics vol.35, pp.12, 2011, https://doi.org/10.1016/j.enganabound.2011.05.012
  47. Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation vol.39, pp.7, 2016, https://doi.org/10.1002/mma.3604
  48. Weak-form collocation – A local meshless method in linear elasticity vol.73, 2016, https://doi.org/10.1016/j.enganabound.2016.09.010
  49. Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis vol.33, pp.3, 2017, https://doi.org/10.1002/num.22135
  50. Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation vol.50, 2015, https://doi.org/10.1016/j.enganabound.2014.08.014
  51. Pricing European Passport Option with Radial Basis Function vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0240-1
  52. Radial basis function-based pseudospectral method for static analysis of thin plates vol.71, 2016, https://doi.org/10.1016/j.enganabound.2016.07.002
  53. Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation vol.34, pp.4, 2010, https://doi.org/10.1016/j.enganabound.2009.10.010
  54. Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method vol.66, 2016, https://doi.org/10.1016/j.enganabound.2016.01.012
  55. Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem vol.7, pp.3, 2016, https://doi.org/10.1016/j.asej.2015.07.009
  56. An improved Moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates vol.64, 2016, https://doi.org/10.1016/j.enganabound.2015.12.003
  57. Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions vol.129, pp.11, 2014, https://doi.org/10.1140/epjp/i2014-14241-9
  58. MESHFREE METHODS AND THEIR COMPARISONS vol.02, pp.04, 2005, https://doi.org/10.1142/S0219876205000673
  59. A dual reciprocity hybrid radial boundary node method based on radial point interpolation method vol.45, pp.6, 2010, https://doi.org/10.1007/s00466-010-0469-1
  60. An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis vol.83, 2017, https://doi.org/10.1016/j.enganabound.2017.07.012
  61. Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization vol.12, pp.2, 2005, https://doi.org/10.1080/15376490490493952
  62. A new spectral meshless radial point interpolation (SMRPI) method: A well-behaved alternative to the meshless weak forms vol.54, 2015, https://doi.org/10.1016/j.enganabound.2015.01.004
  63. The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation 2016, https://doi.org/10.1007/s00521-016-2595-y
  64. Local Radial Point Interpolation Method and Finite Volume Method for the Fully Developed Magnetohydrodynamic Flow and Heat Transfer vol.516-517, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.516-517.170
  65. Domain-type RBF Collocation Methods for Biharmonic Problems vol.15, pp.08, 2018, https://doi.org/10.1142/S0219876218500780
  66. An improved pseudospectral meshless radial point interpolation (PSMRPI) method for 3D wave equation with variable coefficients pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0656-9
  67. Assessment of higher order transverse shear deformation theories for modeling and buckling analysis of FGM plates using RBF based meshless approach pp.1573-6105, 2018, https://doi.org/10.1108/MMMS-07-2017-0069
  68. Numerical Simulation of Dam Break Flows Using a Radial Basis Function Meshless Method with Artificial Viscosity vol.2018, pp.1687-5605, 2018, https://doi.org/10.1155/2018/4245658
  69. A Hybrid Radial Boundary Node Method for Biharmonic Problems vol.243, pp.None, 2002, https://doi.org/10.4028/www.scientific.net/amr.243-249.6003
  70. A 3D computational meshfree model for the mechanical and thermal buckling analysis of rectangular composite laminated plates with embedded delaminations vol.24, pp.6, 2002, https://doi.org/10.1515/secm-2015-0003
  71. A 3D computational meshfree model for the mechanical and thermal buckling analysis of rectangular composite laminated plates with embedded delaminations vol.24, pp.6, 2002, https://doi.org/10.1515/secm-2015-0003
  72. Formulation of pseudospectral meshless radial point Hermit interpolation for the Motz problem and comparison to pseudospectral meshless radial point interpolation vol.16, pp.1, 2002, https://doi.org/10.1108/mmms-04-2019-0084
  73. Pseudospectral meshless radial point interpolation for generalized biharmonic equation in the presence of Cahn-Hilliard conditions vol.39, pp.3, 2020, https://doi.org/10.1007/s40314-020-01175-x
  74. Pseudospectral Meshless Radial Point Hermit Interpolation Versus Pseudospectral Meshless Radial Point Interpolation vol.17, pp.7, 2002, https://doi.org/10.1142/s0219876219500233
  75. Formulation of local numerical methods in linear elasticity vol.16, pp.5, 2020, https://doi.org/10.1108/mmms-05-2018-0094
  76. A weak-form interpolation meshfree method for computing underwater acoustic radiation vol.233, pp.None, 2002, https://doi.org/10.1016/j.oceaneng.2021.109105
  77. A meshless artificial viscosity method for wet-dry moving interfaces problems of shallow water flow vol.236, pp.None, 2021, https://doi.org/10.1016/j.oceaneng.2021.109447