DOI QR코드

DOI QR Code

Baffled fuel-storage container: parametric study on transient dynamic characteristics

  • Received : 2001.06.13
  • Accepted : 2002.01.21
  • Published : 2002.06.25

Abstract

In order to ensure the structural dynamic stability of moving liquid-storage containers, the flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as the disc-type elastic baffle. In practice, the design of a suitable baffle requires a priori the parametric dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE (arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

Keywords

References

  1. Abramson, H.N. and Garza, L.R. (1964), "Some measurements of the effects of ring baffles in cylindrical tanks", J. Spacecraft Rockets, 1(5), 560-564. https://doi.org/10.2514/3.27699
  2. Belytschko, T. and Kennedy, J.M. (1978), "Computer models for subassembly simulation", Nucl. Engrg. Des., 49, 17-38. https://doi.org/10.1016/0029-5493(78)90049-3
  3. Benson, D.J. (1989), "An efficient, accurate, simple ALE method for nonlinear finite element programs", Comput. Meths. Appl. Mech. Engrg., 72, 305-350. https://doi.org/10.1016/0045-7825(89)90003-0
  4. Benson, D.J. (1992), "Computational methods in Lagrangian and Eulerian hydrocodes", Comput. Methods Appl. Mech. Engrg., 99, 235-394. https://doi.org/10.1016/0045-7825(92)90042-I
  5. Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods Appl. Mech. Engrg., 32, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  6. Cho, J.R., Song, J.M. and Lee, J.K. (2001), "Finite element techniques for the free-vibration and seismic analysis of liquid-storage tanks", Finite Elements in Analysis and Design, 37(6-7), 467-483. https://doi.org/10.1016/S0168-874X(00)00048-2
  7. Cho, J.R. and Song, J.M. (2001), "Assessment of classical numerical models for the separate fluid-structure modal analysis", J. Sound and Vib., 239(5), 995-1012. https://doi.org/10.1006/jsvi.2000.3179
  8. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, John Willey & Sons, Singapore.
  9. Donea, J., Giuliani, S. and Halleux, J.P. (1982), "An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions", Comput. Methods Appl. Mech. Engrg., 33, 689-723. https://doi.org/10.1016/0045-7825(82)90128-1
  10. Epperson, T.B., Brown, R. and Abramson, H.N. (1961), "Dynamic loads resulting from fuel motion in missile tanks," Advances in Ballistic Missile and Space Technology, II, 313-327.
  11. Hirt, C.W., Amsden, A.A. and Cook, J.L. (1974), "An arbitrary Lagrangian-Eulerian computing method for all flow speeds", J. Comput. Phy., 14, 227-253. https://doi.org/10.1016/0021-9991(74)90051-5
  12. Hughes, T.J.R., Liu, W.K. and Zimmerman, T.K. (1981), "Lagrangian-Eulerian finite element formulation for incompressible viscous flows", Comput. Methods Appl. Mech. Engrg., 29, 329-349. https://doi.org/10.1016/0045-7825(81)90049-9
  13. Kennedy, J.M. and Belytschko, T.B. (1981), "Theory and application of a finite element method for arbitrary Lagrangian-Eulerian fluids and structures", Nucl. Engrg. Des., 68, 129-146.
  14. Liu, W.K., Belytschko, T. and Chang, H. (1986), "An arbitrary Lagrangian-Eulerian finite element method for path dependent materials", Comput. Methods Appl. Mech. Engrg., 58, 227-245. https://doi.org/10.1016/0045-7825(86)90097-6
  15. Miyata, T., Yamada, H. and Saito, Y. (1988), "Suppression of tower-like structure vibration by damping effect of sloshing water contained", Transaction of Japan Society of Civil Engineering, 34A, 617-626.
  16. Noh, W.F. (1964), "CEL: a time-dependent, two-space-dimensional, coupled Eulerian-Lagrangian code", Methods in Computational Physics (Alder et al. eds.), 117-179.
  17. Nomura, T. and Hughes, T.J.R. (1992), "An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body", Comput. Methods Appl. Mech. Engrg., 95, 115-138. https://doi.org/10.1016/0045-7825(92)90085-X
  18. Ramaswamy, B. and Kawahara, M. (1987), "Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow", Int. J. Numer. Methods Fluids, 7, 1053-1075. https://doi.org/10.1002/fld.1650071005
  19. Souli, M., Ouahsine, A. and Lewin, L. (2000), "ALE formulation for fluid-structure interaction problems", Comput. Methods Appl. Mech. Engrg., 190, 659-675. https://doi.org/10.1016/S0045-7825(99)00432-6
  20. Stephens, D.G. (1966), "Flexible baffles for slosh damping", J. Spacecraft Rockets, 3(5), 765-766. https://doi.org/10.2514/3.28533
  21. Welt, F. and Modi, V.J. (1992), "Vibration damping through liquid sloshing, part 2: experimental results", J. Vib. Acoust., 114, 17-23. https://doi.org/10.1115/1.2930227
  22. Winslow, A.M. (1990), "Equipotential zoning of the interior of a three-dimensional mesh", Lawrence Radiation Labratory, UCRL-7312.
  23. Zienkiewicz, O.C. and Taylor, R.L. (1991), The Finite Element Method, 2, McGraw-Hill, New York.

Cited by

  1. Sloshing in concrete cylindrical tanks subjected to earthquake vol.163, pp.4, 2010, https://doi.org/10.1680/eacm.2009.163.4.261
  2. A new ALE formualtion for sloshing analysis vol.16, pp.4, 2003, https://doi.org/10.12989/sem.2003.16.4.423
  3. Finite element analysis of resonant sloshing response in 2-D baffled tank vol.288, pp.4-5, 2005, https://doi.org/10.1016/j.jsv.2005.01.019
  4. Damping enhancement of seismic isolated cylindrical liquid storage tanks using baffles vol.29, pp.12, 2007, https://doi.org/10.1016/j.engstruct.2007.09.008
  5. Finite Element and Smoothed Particle Hydrodynamics Modeling of Fluid–Structure Interaction Using a Unified Computational Methodology vol.140, pp.6, 2018, https://doi.org/10.1115/1.4038939
  6. Experimental investigation of the effect of baffles on the efficiency improvement of irrigation sedimentation tank structures vol.63, pp.4, 2002, https://doi.org/10.12989/sem.2017.63.4.567