Mycorrhizal colonization effects on C metabolism in relation to drought-tolerance of perennial ryegrass

페레니얼 라이그라스에서 Mycorrhiza 접종이 탄수화물대사와 가뭄스트레스 저항성에 미치는 영향

  • Lee, Bok-Rye (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Jung, Woo-Jin (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Dae-Hyun (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Kil-Yong (Department of Biological & Environmental Chemistry, College of Agriculture and Life Science, Chonnam National University) ;
  • Shon, Bo-Kyoon (Department of Agricultural chemistry, Sunchon National University) ;
  • Kim, Tae-Hwan (Department of Animal Science & Institute of Agriculture Science and Technology, Chonnam National University)
  • 이복례 (전남대학교 농업생명과학대학 동물자원학과) ;
  • 정우진 (전남대학교 농업생명과학대학 동물자원학과) ;
  • 김대현 (전남대학교 농업생명과학대학 동물자원학과) ;
  • 김길용 (전남대학교 농업생명과학대학 생물환경화학과) ;
  • 손보균 (순천대학교 농과대학 농화학과) ;
  • 김태환 (전남대학교 농업생명과학대학 동물자원학과 & 농업과학기술연구소)
  • Received : 2002.07.19
  • Accepted : 2002.08.13
  • Published : 2002.08.30

Abstract

To investigate the effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) colonization on drought-stress tolerance, leaf water potential, chlorophyll concentration, P content and carbohydrate composition were examined in perennial ryegrass (Lolium perenne L.) plants exposed to drought-stressed or well-watered conditions. Drought stress significantly decreased leaf water potential, P content and leaf growth. These drought-induced damages were moderated by mycorrhizal colonization. Drought stress decreased the concentration of soluble sugars in shoots. AM plants had a higher foliar soluble sugar than non-AM plants under drought stress condition. Drought stress depressed the accumulation of starch and fructan in shoots, but stimulated in roots. Under drought-stressed condition, starch concentration in roots was higher in non-AM plants than in AM plants. Fructan was the largest pool of carbohydrates, showing the highest initial concentration and the highest net increase for 28 days of treatment. Drought stress slightly decreased fructan concentration in shoots, but remarkably increased in roots. Under drought-stressed condition, fructan concentrations in non-AM and AM shoots at day 28 were 18.7% and 13.3% lower than the corresponding values measured at well-watered plants. However, in the roots, fructan accumulation caused by drought was lessen 13.6% by mycorrhizal colonization. The results obtained suggest that mycorrhizal colonization improves drought tolerance of the host plants by maintaining higher leaf water status and P status, and by retaining more foliar soluble sugars.

Mycorrhiza 접종이 페레니얼 라이그라스가 가뭄 스트레스 저항성에 대한 효과를 검증하기 위해 mycorrhiza 접종구(AM)와 mycorrhiza를 접종하지 않은 비접종구 (non-AM)를 정상적 토양 수분 (-0.04Mpa) 및 가뭄 스트레스 (-0.12MPa)를 각각 처리한 후 0.14 및 28일에 잎의 수분포텐셜, 인의 함량, 작물의 성장 및 탄수화물 농도를 분석하였다. 가뭄 스트레스구에서 잎의 수분포텐셜, 클로로필, 인의 함량 및 잎의 성장이 유의적으로 감소되었다. 가뭄에 의한 이러한 생리적 장해요인들은 mycorrhiza 접종에 의해 완화되었다. 가뭄 스트레스하에서 잎의 soluble sugar 농도는 감소 되었으며, AM 처리구는 non-AM 처리구보다 soluble sugar 농도는 높게 나타났다. 가뭄 스트레스하에서 지상부의 starch와 fructan의 축적은 가뭄 스트레스 하에서 감소되는 반면 뿌리에서는 증가하였다. 가뭄 스트레스 하에서 뿌리에서 starch의 농도는 non-AM 처리구에서 AM처리구보다 더 높게 나타났다. 가뭄 스트레스 하에서 잎의 fructan 농도는 약간 감소하였으나 뿌리에서는 현저히 증가하였다. 가뭄 스트레스 하에서 처리 후 28일째 fructan의 농도는 정상적 수분공급구와 비교해 볼 때 non-AM과 AM 잎에서 각각 18.7% 와 13.3% 낮았다. 뿌리에서 가뭄스트레스에 의한 fructan의 축적은 mycorrhiza 접종에 의해 약 14% 감소되었다. 이상의 결과들은 mycorrhiza 접종은 잎의 수분 포텐셜과 인의 함량을 더 높게 유지하게 하고, soluble sugar의 함량을 더 많이 보유하게 함으로써 작물의 가뭄에 대한 내성을 증가 시킴을 잘 보여 주었다.

Keywords

References

  1. Allen, V. B. and M. F. Allen. 1986. Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New. Phytol. 104: 559-571 https://doi.org/10.1111/j.1469-8137.1986.tb00656.x
  2. Auge, R. M.. K A Schekel and R L. Wample. 1987. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291-302 https://doi.org/10.1007/BF02370876
  3. Austin, R. B. 1990. Maxirnlzing crop production in water limited environments. p. 13-25. In F. E. G. Baker (ed), Drought resistance in cereals, ICSU press. CAB international. Wallingford, Oxon, U.K
  4. Bethlenfalvay, G. J.. M. S. Brown. R. N. Ames and R. E. Thomas. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant 72: 565-571 https://doi.org/10.1111/j.1399-3054.1988.tb09166.x
  5. Bohner. H. J .. D. E. Nelson and R. G. Jensen. 1995. Adaptations to environmental stresses. Plant Cell 7: 1099-1111 https://doi.org/10.1105/tpc.7.7.1099
  6. Brundrett, M. C.. Y. Piche and R L. Peterson. 1984. Anew method for observing the morphology of vesicular arbuscular mycorrhizae. Can. J. Bot. 62: 2128-2134 https://doi.org/10.1139/b84-290
  7. Chaves. M. M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot. 42: 1-16 https://doi.org/10.1093/jxb/42.1.1
  8. Davies. F. T.. J. R. Potter and R. G. Linderman. 1992. Mycorrhlzae and repeated drought exposure affect drought resistance and extraradical hyphae development on pepper plants Independent of plant size and nutrient content. J. Plant Phyisol. 139: 289-294 https://doi.org/10.1016/S0176-1617(11)80339-1
  9. Davis, J. S. and J. E. Gander. 1967. A re-evaluatlon of the Roe procedure for the determination of fructose. Anal. Blochern. 19: 72-79 https://doi.org/10.1016/0003-2697(67)90135-2
  10. Dixon. R. K.. M. V. Rao and V. K. Garg. 1994. Water relations and gas exchange of mycorrhizal Leucaena leurocephala seedlings. J. Trop. For. ScI. 6: 542-552
  11. Faber. B. A. R. J. Zasoski, D. N. Munns and K. Shackel. 1991. A method for measuring nutrient and water uptake In mycorrhizal plants. Can. J. Bot. 69: 87-94 https://doi.org/10.1139/b91-012
  12. Fitter, A. H. 1988. Water relations of red clover Trifolwn pmtense L. as affected by VAmycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 39: 595-603 https://doi.org/10.1093/jxb/39.5.595
  13. Gemma. J. N.,R E. Koske, E. M. Roberts, N. Jackson and K. De Antonls. 1997. Mycorrhizal fungi Improve drought resistance In creeping bentgrass. J. Turfgrass ScI. 73: 15-29
  14. Hanson, A.D. and W. D. Hits. 1982. Metabolic responses of mesophytes to plant water deficits. Annu. Rev. Plant Physlol. 33: 161-203
  15. Jones. M. M.. C. B. Osmond and N. C. Turner. 1980. Accumulation of solutes In leaves of sorghum and sunflower In response to wier deficits. Aust. J. Plant Physlol. 7: 193-205 https://doi.org/10.1071/PP9800193
  16. Kameli, A. and D. M. Losel, 1996. Growth and sugar accumulation In durum wheat plants under water stress. New.Phytol. 132: 57-62 https://doi.org/10.1111/j.1469-8137.1996.tb04508.x
  17. Li, R.. B. C. .Joern, J. J. Volence and S.M. CunnIngham. 1996. Seasonal changes In nonstructural carbohydrates, protein and macronutrients In roots of alfalfa. red clover. sweetclover,and blrdsfoot trefoil. Crop ScI.36: 617-623 https://doi.org/10.2135/cropsci1996.0011183X003600030016x
  18. Mackinney, G. 1941. Absorption of light by chlorophyll solution. J. BioI. Chem. 140: 315-322
  19. Munns, R. and R. Weir. 1981. Contribution of sugars to osmotic adjustment In elongating and expanded zones of wheat leaves during moderate water deficit at two light levels.Aust. J. Plant Physiol. 8: 93-105
  20. Quick, P.. G. Slegl, H. E. Neuhaus. R. Fell and M. Stitt. 1989. Short term water stress leads to a stimulation of sucrose synthesis by activating sucrose phosphatesynthaes. Planta. 177: 536-546.
  21. Rodrigues. M. L.. M. M. Chaves, R. Wendler, M. M. David, W. P. Quick. R. C. Leegood, M. Stlt and J.S. Pereira. 1993. Osmotic adjustment In water stressed grapevine leaves In relation to carbon assimilation. Aust. J. Plant Physlol. 20: 309-321 https://doi.org/10.1071/PP9930309
  22. Rutz-Lozano, J. M.. M. Gomez and R. Azcon. 1995. Influence of different Glomus species on the tlme-course of physiological responses of lettuce to progressive drought stress pertods. Plant ScI. 110: 37-44 https://doi.org/10.1016/0168-9452(95)04184-V
  23. Sass, J. E. 1958. Botanical microtechnique. 3rd ed. Iowa State University Press. Ames. IA
  24. Sivasankar, S.. and A. Oaks. 1995. Regulation of nitrate reductase during early seedling growth: A role for asparagtnes and glutamine. Plant Phystol. 107: 1225-1231 https://doi.org/10.1104/pp.107.4.1225
  25. Sharp, R E. 1990. Growth of the maize primary root at low water potentials. IT Roleofgrowth and deposition of hexose and potassium In osmotic adjustment. Plant Physiol. 93: 1337-1346 https://doi.org/10.1104/pp.93.4.1337
  26. Spollen, W. G.. and C. J. Nelson. 1988. Charactertzatlon of fructan from mature leaf blades and elongation zones of developing leaf blades of wheat. tall fescue, and timothy. Plant Physiol. 88: 1349-1353 https://doi.org/10.1104/pp.88.4.1349
  27. Subramanian, K. S., and C. Charest. 1995. Influence of arbuscular mycorrhlzae on the metabolism of maize under drought stress. Mycorrhiza 5: 25-32
  28. Subramanian. K. S.. and C. Charest. 1997. Nutritional. growth, and reproductiveresponses of maize {Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7: 25-32 https://doi.org/10.1007/s005720050159
  29. Subramanian, K. S., C. Charest, L. M. Dwyer and R I. Hamilton. 1995. Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytol. 129:643-650 https://doi.org/10.1111/j.1469-8137.1995.tb03033.x
  30. Turner, N. C. 1986. Crop water deficits: a decade of progress. MY. Agron. 39: 1-51
  31. Van Volkenburgh, E., and J. S. Boyer. 1985. Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol. 77:190-194 https://doi.org/10.1104/pp.77.1.190
  32. Vassey,T. L., and T. D. Sharkey. 1989. Mildwater stress of phaselous vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol, 89: 1066-1070 https://doi.org/10.1104/pp.89.4.1066
  33. Wang, Z.,and G.W.Stutte. 1992.The role of carbohydrates in active osmotic adjustment in apple under water stress. J. Arne. Sci. Hort. Sci. 117:816-823
  34. Wright, D. P., D. J. Read and J. D. Scholes. 1998a. Mycorrhizal sink strength influences whole plant carbon balance of TIifo/ium repens L. Plant Cell Envrion, 21: 881-891 https://doi.org/10.1046/j.1365-3040.1998.00351.x
  35. Wright, D. P., J. D. Scholes and D. J. Read. 1998b. Effects of VAmycorrhizal colonization on photosynthesis and biomass production of TrtJoliwn repens L. Plant Cell Environ, 21: 209-216 https://doi.org/10.1046/j.1365-3040.1998.00280.x
  36. Zrenner, R, and M.Stitt. 1991. Comparison of the effectof rapidly and gradually developing water stress on carbohydrate metabolism in spinach leaves. Plant Cell Envnon, 14:939-946 https://doi.org/10.1111/j.1365-3040.1991.tb00963.x