Structural Features of Various Trichomes Developed in Salvinia natans

부유부엽성 생이가래 모용의 구조적 특징

  • 지상용 (계명대학교 자연과학대학 생물학과) ;
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Published : 2002.12.01

Abstract

Salvinia natans, an unique water fern having a small rootless body, developed three different types of trichomes throughout the plant. The most peculiar type exhibiting rows of obvious, whitish, multicellular trichome clusters was noticed in the upper surface of the floating leaves. Eight to ten branches within a cluster extended ca. $370{\sim}420{\mu}m$ from the leaf surface. No stalk cell was found, however, four large epidermal cells were discernable at the base of four central branches in the cluster. Each branch consisted of $8{\sim}10$ obliquely-oriented small cells that gradually decreased in size toward the branch tip. The second type was found in the lower surface of the floating leaves, stems, and sporocarps. Multicellular uniseriate trichomes, ca. $430{\sim}980{\mu}m$ long, were distributed all over these structures. The tip of trichome was acicular, but a semi-spheric protuberance of approximately $24{\sim}32{\mu}m$ in diameter occurred at the base of each trichome. The protuberance appeared to be firmly attached to the side of the basal cell, however, internal connection to the trichome cell itself was uncertain. The third type was similar to the second in that multicellur uniseriate trichomes with acicular tip and a protuberance at the base were present. However, the trichomes were considerably long relative to the second type, and only occurred along the surface of highly dissected, submerged leaves. A majority of the trichomes exceeded more than 2 mm in length that hung downward in the water. Regardless of trichome type, all trichomes contained a huge central vacuole with very thin cytoplasm, resulting from the fusion of several vacuoles during early trichome development. The various densely-distributed trichomes formed in Salvinia natans probably play an important role in plant buoyancy.

생이가래는 뿌리가 형성되지 않고 부유엽, 침수엽, 줄기로만 구성되어 있는 부유부엽성 수생식물이다. 본 연구는 축소된 생이가래 식물체에 발달하는 세 유형의 모용에 대하여 형태 구조적으로 연구하였다. 부유엽 상피에는 중맥을 중심으로 규칙적으로 배열된 $370{\sim}420{\mu}m$ 크기의 다세포성 모용이 $8{\sim}10$개씩 그룹을 이루며 분포하였다. 반면, 부유엽 하피, 줄기, 포자낭 표면에는 $4{\sim}6$개 세포로 이루어진 $430{\sim}980{\mu}m$의 모용이 발달하였는데, 이때 모용 기저세포의 측면에는 직경 $24{\sim}32{\mu}m$의 반구형의 팽창된 세포가 형성되어 부착하였다. 이와는 달리, 가늘고 길게 세분된 침수엽 표면에는 두 번째 유형과 유사하나 $10{\sim}13$ 또는 그 이상의 세포로 구성된 $2{\sim}2.5mm$ 이상의 매우 긴 모용들이 밀생하여 원주형의 침수엽 표면 전체를 하향으로 둘러싸며 발달하였다. 이들 모용세포에는 발달 초기에 일어난 액포 융합현상으로 세포용적의 대부분을 차지하는 거대 액포가 형성되어 있어 모용세포의 세포질 밀도는 그리 높지 않은 상태를 유지하게 된다. 이와 같이 식물체 전 표피조직에 발달하는 여러 유형의 모용은 조직내부에 형성되어 있는 기실과 함께 축소된 생이가래 식물체의 수중 부유에 중요한 기능을 수행하는 것으로 추정되었다.

Keywords

References

  1. Andrews SB: Ferns of Queensland. pp. 305-306. Queensland Department of Primary Industries, Brisbane, 1990
  2. Bernard FA, Bernard JM: Flower structure, anatomy and life history of Wolffia australiana (Benth.) den Hartog and van der Plas. Bull Torrey Bot Club 117: 18-26, 1990 https://doi.org/10.2307/2997125
  3. Croxdale JG: Salvinia leaves. I. Origin and early differentiation of floating and submerged leaves. Can J Bot 56: 1982-1991, 1978 https://doi.org/10.1139/b78-237
  4. Croxdale JG: Salvinia leaves. II. Morphogenesis of the floating leaf. Can J Bot 57: 1951-1959, 1979 https://doi.org/10.1139/b79-245
  5. Croxdale JG: Salvinia leaves. III. Morphogenesis of the submerged leaf. Can J Bot 59: 2065-2072, 1981 https://doi.org/10.1139/b81-268
  6. Gunning BES, Steer MW: Plant Cell Biology: Structure and Function. pp 1-60, Jones and Bartlett Publishers, Boston, 1996
  7. Hbant-Mauri R: Cauline meristems in leptosporangiate ferns: structure, lateral appendages, and branching. Can J Bot 71: 1612-1624, 1993 https://doi.org/10.1139/b93-196
  8. Jacobsen WBG: The Ferns and Fern Allies of South Africa. pp. 489-492. Butterworths Ltd., Durban. 1989
  9. Ji SY: Structural differentiation of heterophylly in Salvina natans (L.) ALL. Master's Thesis, Keimyung University. pp. 1-36, 2002
  10. Jones DL: Encyclopedia of Ferns: An Introduction to Ferns, Their Structure, Biology, Economic Importance, Cultivation and Propagation. p. 70, Lothian Publishing Company Ltd, Melbourne, 1987
  11. Kaul RB: Anatomical observations on floating leaves. Aquat Bot 2: 215-234, 1976 https://doi.org/10.1016/0304-3770(76)90022-X
  12. Kim KA, Kim IS: Structural aspects of the reduced free-floating hydrophyte, Spirodela polyrhiza. Kor J Electron Microsc 30: 233-240, 2000
  13. Lee WS: Modern Plant Anatomy. pp. 48-68, 209-213. 285, Woosung Publishing Co., Seoul, 2000
  14. Lellinger DB: A field manual of the Fern & Fern Allies of the United States and Canada. pp. 403-404, Smithsonian Institution Press, Washington DC, 1985
  15. Lemon GD, Posluszny U, Husband BC: Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquat Bot 70: 79-87, 2001 https://doi.org/10.1016/S0304-3770(00)00131-5
  16. Lemon GD, Posluszny U: A new approach to the study of apical meristem development using laser scanning confocal microscopy. Can J Bot 76: 899-904, 1998 https://doi.org/10.1139/cjb-76-5-899
  17. Lemon GD, Posluszny U: Shoot morphology and organogenesis of the aquatic floating fern Salvinia molesta. D. S. Mitchell examined with the aid of laser scanning confocal microscopy. Intl J Plant Sci 158: 693-703, 1997 https://doi.org/10.1086/297481
  18. Oliver JD: A review of the biology of giant Salvinia (Salvinia molesta Mitchell). J Aquat Plant Manage 31: 227-231, 1993
  19. Room PM: Ecology of a simple plant-herbivore system: biological control of Salvinia. Trends Ecol 5: 74-79, 1990 https://doi.org/10.1016/0169-5347(90)90234-5
  20. Sculthorpe CD: . pp 5-10, 176-204, 218-247, 259-267, Edward Arnold Ltd., London, 1967
  21. Tryon RM, Tryon AF: Ferns and Allied Plants. Springer-Verlag, New York. pp. 770-776, 1982
  22. Whatley KM: Chloroplast development in Azolla roots. New Phytol 89: 129-138, 1981 https://doi.org/10.1111/j.1469-8137.1981.tb04755.x
  23. White RA, Turner MD: Anatomy and development of the fern sporophyte. Bot Rev 61: 281-305, 1995 https://doi.org/10.1007/BF02912620
  24. White SL, Wise RR: Anatomy and ultrastructure of Wolffia columbiana and Wolffia borealis, two nonvascular aquatic angiosperms. Intl J Plant Sci 159: 297-304, 1998 https://doi.org/10.1086/297550