Immuno-Electron Microscopic Studies on the Localization of Serotonin and Somatostatin in the Optic Lobes of Cephalopods (Todarodes pacificus and Octopus minor) Inhabiting the Korean Waters

한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽 (Optic lobe)내 Serotonin 및 Somatostatin의 분포에 관한 면역전자현미경적 연구

  • Chang, Nam-Sub (Department of Life Science, College of Natural Science, Mokwon University) ;
  • Han, Jong-Min (Department of Life Science, College of Natural Science, Mokwon University) ;
  • Kim, Sang-Won (Department of Life Science, College of Natural Science, Mokwon University) ;
  • Lee, Kwang-Ju (Dept. of Anatomy, Chungbuk National University College of Medicine) ;
  • Hwang, Sun-Jong (Dept. of Anatomy, Chungbuk National University College of Medicine) ;
  • Lee, Jung-Chan (Dept. of Anatomic Pathol, Eulji Univ. Hospital)
  • 장남섭 (목원대학교 자연과학대학 생명과학부) ;
  • 한종민 (목원대학교 자연과학대학 생명과학부) ;
  • 김상원 (목원대학교 자연과학대학 생명과학부) ;
  • 이광주 (충북대학교 의과대학 해부병리과) ;
  • 황선종 (충북대학교 의과대학 해부병리과) ;
  • 이정찬 (을지의과대학병원 해부병리과)
  • Published : 2002.09.01

Abstract

In this study, we carried out immunostaining and immunogold labeling with antibodies to serotonin and somatostatin to examine the characteristics and functions of the neurons that secrete neurotransmitters in optic lobes of Todarodes pacificus and Octopus minor. As a result of immunostaining with anti-somatostatin, the nerve cells of Todarodes pacificus reacted as similar to the anti-serotonin, but in Octopus minor, only large cells in the outer granule cell layer reacted positively. In the immunogold labeling with anti-serotonin, the nerve cells in the inner grande cell layer and medulla of Todarodes pacificus reacted strongly, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm. However, in Octopus minor, only 17 gold particles were labeled, which stated a weak reaction. On the other hand, in the anti-somatostatin case, the nerve cells in the outer and inner granule cell layers and medulla of Todarodes pacificus showed strong reaction, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm while the nerve cells in the outer granule cell layer of Octopus minor reacted weakly, about 3 gold particles being labeled per the equivalent area. As a result of immunostaining and immunogold labeling with two types of antibodies to each part of the optic lobes, we found that the reactive nerve cells were distributed differently in the two species. In particular, the degree of reactivity to the immunostaining and immunogold labeling appeared stronger in Todarodes pacificus than in Octopus minor.

두족류 Octopus minor와 Todarodes pacificus의 시엽내 신경전달물질을 분비하는 neuron의 특성 및 기능을 확인하기 위해 serotonin 및 somatostatin의 항체를 사용한 면역염색과 면역금표지법을 시행하였다. 면역염색 결과 항-somatostatin은 살오징어인 경우 항-serotonin 면역반응과 유사하게 나타났지만, 서해낙지에서는 외과립세포층의 큰 세포에서만 반응을 보였다. 항-serotonin을 이용한 면역금표지법은 살오징어인 경우 내과립세포층과 수질부의 신경세포에서는 세포질 $0.5{\mu}m^2$당 30개 정도의 금입자가 관찰되어 강한 반응을 보인 반면, 서해낙지에서는 17개 정도의 비교적 약한 반응을 보였다. 항-somatostatin에서는 살오징어의 외과립 및 내과립세포층 그리고 수질부의 반응된 세포의 세포질 $0.5{\mu}m^2$당 30개 정도의 금입자가 관찰되어 강한 반응을 보인 반면, 서해낙지의 외과립세포층의 세포에서는 3개 정도의 금입자만이 관찰되어 역시 약한 반응을 보였다. 이와 같이 시엽의 각 부위별 면역염색과 면역금표지법을 시행한 결과 2종류의 항체에 각각 양성반응을 보인 신경세포들이 두 종에서 다양하게 분포하고 있음을 확인했는데 특히 면역염색과 면역금표지법에 관한 반응외 정도를 비교하면 서해낙지에 비해 살오징어에서 비교적 강하게 나타났다.

Keywords

References

  1. Bishop CA, O'Shea M: Immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). J Neurobiology 14: 251-269, 1983 https://doi.org/10.1002/neu.480140402
  2. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Riner J, Guillemin R: Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 178: 77-79, 1973
  3. Bullock TH, Horridge G: Structure and function in the nervous system of invertebrates. San Francisco: W.H. Freeman and Co. 1965
  4. Davies P, Terry RD: Cortical somatostatin-like immunoreactivity in cases of Alzheimer's disease and senile dementia of the Alzheimer type. Neurobiol Aging 2: 9-14, 1981 https://doi.org/10.1016/0197-4580(81)90053-1
  5. Dodd J, Kelly JS: Is somatostatin an excitatory transmitter in the hippocampus?. Nature 273: 674-675, 1978 https://doi.org/10.1038/273674a0
  6. Fritsch HAR, Moorden SV, Pearse AGE: Gastrointestinal and neurohormonal peptides in the alimentary tract and cerebral complex of Ciona intestinalis. Cell Tissue Res 223: 369-402, 1982 https://doi.org/10.1007/BF01258496
  7. Feldman SC: Distribution of immunoreactive somatostatin(ISRIF) in the nervous system of the squid, Loligo pealei. J Comparative Neurology 245: 238-257, 1986 https://doi.org/10.1002/cne.902450207
  8. Han JM, Chang NS: Immuno-electron microscopic studies on the distribution of dopamine and ca1bindin-D28K in the optic lobes of Cephalopods (Octopus minor and Todarodes pacificus) inhabiting the Korean waters. Korean J Electron Microscopy 32: 175-183, 2002. (Korean)
  9. Jackson IMD: Evolutionary significance of the phylogenetic distribution of the mammalian hypothalamic releasing hormones. Fed Proc 40: 2545-2552, 1981
  10. Juorio AV: Catecholamines and 5-hydroxytryptamine in nervous tissue of cephalopods. J Physiology 216: 213-226, 1971 https://doi.org/10.1113/jphysiol.1971.sp009519
  11. Juorio AV, Killick SW: Monoamines and their metabolism in some molluscs. Comp Gen Pharmacol 3: 283-295, 1972 https://doi.org/10.1016/0010-4035(72)90005-5
  12. Kim SJ, Lee JH: A study on the activity of antibodies immunoreaction to the antigen of Paragoninus westermani. Korean J Electron Microscopy 28: 527-538, 1998. (Korem)
  13. Land PW, Crow T: Serotonin immunoreactivity in the circumesophageal nervous system of Hermissenda crassicornis. Neurosci Letters 62: 119-205, 1985 https://doi.org/10.1016/0304-3940(85)90294-0
  14. LeRoith S, Roth J: Vertebrate hormones and neuropeptides in microbes: Evolutionary origin of intercellular communication. In L. Martini and WF. Ganong (eds): Frontiers in Neuroendocrinology. New York: Raven Press, pp. 1-25. 1984
  15. Li WP, Lai HW, Cheng SY, Yew DT: Somatostatin-positive neurons in the different parts of the brain in normal aging and Alzheimer's disease. Biol Signals 5: 343-348. 1996 https://doi.org/10.1159/000109207
  16. Nässel DR, Elekes K: Ultrastructural demonstration of serotonin immunoreactivity in the nervous system of an insect(Calliphora erythrocephala). Neurosci Letters 48: 203-210, 1984 https://doi.org/10.1016/0304-3940(84)90020-X
  17. Olpe HR, Balcar VJ, Bittiger H, Rink H, Sieber P: Central actions of somatostatin. Eur J Pharmacol 63: 127-133, 1980 https://doi.org/10.1016/0014-2999(80)90436-7
  18. Ono JK, McCanan RE: Immunochemical localization and direct assays of serotonin-containing neurons in Aplysia. Neuroscience 11: 549-560, 1984 https://doi.org/10.1016/0306-4522(84)90044-7
  19. Osborne NN, Beaton DW, Boyd PJ, Walker RJ: Substance P-like immunoreactivity in the retina and optic lobe of the squid. Neuroscience Letters 70: 65-68, 1986 https://doi.org/10.1016/0304-3940(86)90438-6
  20. Renaud LP, Martin JB, Brazeau P: Depressant action of TRH, LH-RH and somatostatin on activity of central neurons. Nature 255: 233-235, 1975 https://doi.org/10.1038/255233a0
  21. Saidel WM: Connections of the Octopus Optic lobe : an HRP study. J Comp Neurology 206: 346-358, 1982 https://doi.org/10.1002/cne.902060403
  22. Sano Y, Takeuchi Y, Kimura H, Goto M, Kasata M, Kojima M, Matsuura T, Ueda S, Yamada H: Immunohistochemical studies on the processes of serotonin neurons and their ramification in the central nervous system-with regard to the possibility of the existence of Golgi's rete nervosa diffusa. Arch Histol Jap 45: 305-316, 1982 https://doi.org/10.1679/aohc.45.305
  23. Sano Y, Ueda S, Yamada H, Takeuchi Y, Goto M, Kawata M: Immunohistochemical demonstration of serotonin-containing CSF-contacting neurons in the submammalian paraventricular organ. Histochemistry 77: 423-430, 1983 https://doi.org/10.1007/BF00495798
  24. Steinbusch HWM: Distribution of serotonin-immunoreactivity in the central nervous system of the rat - cell bodies and terminals. Neuroscience 6: 557-618, 1981 https://doi.org/10.1016/0306-4522(81)90146-9
  25. Suzuki H, Yamamoto T, Inenaga M, Uemura H: Galanin-immunoreactive neuronal system and colocalization with serotonin in the optic lobe and peduncle complex of the octopus(Octopus vulgaris). Brain Research 865: 168-176, 2000 https://doi.org/10.1016/S0006-8993(00)02191-0
  26. Takeuchi Y, Kimura H, Sano Y: Immunohistochemical demonstration of the distribution of serotonin neurons in the brainstem of the rat and cat. Cell Tissue Res 22: 247-267, 1982
  27. Uemura T, Yamashita T, Haga C, Miyazaki N, Kondo H, Matsushita M: Localization of serotonin-immunoreactivity in the central nervous system of Octopus vulgaris by immunohistochemistry. Bran Research 406: 73-86, 1987 https://doi.org/10.1016/0006-8993(87)90770-0
  28. Wolters JG, Ten Donkelaar HJ, Steinbusch HWM, Verhofstad AAJ: Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study. Neuroscience 14: 169-193, 1985 https://doi.org/10.1016/0306-4522(85)90172-1
  29. Yamashita T, Haga C, Hirai K, Uemura T, Kondo H, Kosaka K: Localization of serotonin immunoreactivity in cepha1opod visual system. Bran Research 521: 81-88, 1990 https://doi.org/10.1016/0006-8993(90)91527-N
  30. Youdim MB, Feldman SC, Pappas GD, Pollard HB: Metabolism and the nature of monoamine oxidase in squid central nervous system. Brain Research 381: 300-304, 1986 https://doi.org/10.1016/0006-8993(86)90080-6
  31. Young JZ: The central nervous system of Loligo. I. The optic lobe. Philos Trans R Soc Lond Biol 267: 263-302, 1974 https://doi.org/10.1098/rstb.1974.0002
  32. Young JZ: The nervous system of Loligo. V. The vertical lobe complex. Philos Trans R Soc Lond Biol 285: 311-354, 1979 https://doi.org/10.1098/rstb.1979.0008