Effect of an Acid pH Shock on Physiological Changes of Chlamydomonas acidophila (Chlorophyta), UTCC 122

pH 충격에 의한 Chlamydomonas acidophila (Chlorophyta), UTCC 122의 생리적 변화에 관한 연구

  • Published : 2002.09.30

Abstract

The effect of low pH on physiological changes was studied with the acidophilic green alga, Clamydomonas acidophila, UTCC 122. The growthrates (${\mu}$) were identical, $0.5{\sim}0.7\;day^{-1}$, at pH 3.7${\sim}$6.7 and no significantly different (ANOVA, p =0.134), showing cell volume reduced gradually as they were growing, whereas that at pH 2.7 was falling to zero and cell volume increased dramatically. Chlorophyll a concentration of the cultures incubated for one day was $191{\sim}255\;pg\;cell^{-1}$, after then it declined from $60{\sim}103\;pg\;cell^{-1}$ at pH 3.7${\sim}$6.7 except $210\;pg\;cell^{-1}$ at pH 2.7, which was directly related with cell volume. External carbonic anhydrase (CA) activity was varied from1.1 to$3.7{\times}10^{-4}\;E.U.\;mm^{-2}$, showing the gradualincrease during culture, except at 2.7 and pH 5.7. However there was not found any relationship among the pH gradient cultures. CA molecular mass of C. acidophila was 29 kBa, and concentration of that was identical in all cultures. The proteins of 41 kDa and 63 were not or very faintly expressed in low pH cultures, in contrast that of 17 kDa more expressed. In this work, we found that C. acidophila could live optimally within a wide range of acidic pH, and 17 kDa of unidentified protein might be concerned with tolerating in low acid environment.

녹조류 Chlamydomonas acidophia, UTCC 122균주를 이용하여 pH변화에 따른 조류의 생리인 변화를 관찰하였다. 성장률(${\mu}$)은 pH 3.7${\sim}$6.7의 배양에서 $0.5{\sim}0.7\;day^{-1}$이었으며 (ANOVA, p=0.134),점차 세포의 크기가 작아지는 경향을 보였다. pH 2.7의 배양에서는 성장하지 않았으며, 세포의 크기가 급격하게 증가하였다. 배양 1일 후 엽록소 a 는 $191{\sim}255\;pg\;cell^{-1}$이었으나, 5일째는 pH 2.7배지에서 $210\;pg\;cell^{-1}$로 큰 변화가 없으며, 다른 pH의 배양에서는 $60{\sim}103\;pg\;cell^{-1}$로 감소하였다. 단위세포에 대한 엽록소의 양은 세포 체적과 직접적으로 관련이 있다. Carbonic anhydrase(CA)의 활성도는 $1.1{\sim}3.7{\times}10^{-4}\;E.U.\;mm^{-2}$이었으며, pH 2.7과 pH 5.7배지를 제외하고 점차 증가하는 경향을 보였다. pH농도 차에 의한 비교에서는 유사한 경향을 보였다. C. acidophila의경우 CA분자량은 29kDa이었으며, pH농도 구배에 의한 발현 차이는 없었다. 이것은 $CO_2$$HCO_3\;^-$를 조절하는 CA가 산성에서 수소이온조절에 직접 작용하지 않는 것을 의미한다. 단백질 발현양상은 41과 63kDa은 pH가 낮은 배지에서 자랄수록 발현이 억제되었으며, 17kDa단백질은 점차 증가하였다. 본 연구를 통해, C. acidophila는 다른 생물과 달리 넓은 범위의 산성에서 잘 성장할 수 있으며,낮은 산성에서 자랄수록 17kDa의 단백질이 증가하는 것은 17kDa단백질이 산성에 적응하기 위한 기능을 하는 것으로 추정된다.

Keywords

References

  1. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254
  2. Bradley, L., Bearson, L. Wilson and J.W. Foster, 1998. A low pH-inducible, PhoPQ-dependent aci tolerance response protects Salmonella typhimuriumagainst inorgnic acid stress. J. Bacteriol. 180: 2409-2417
  3. Brock, T.D. 1973. Low pH limits for the existence of blue-green algae: evolutionary and ecological implications. Science, 179: 180-183
  4. Browne, N. and B.C.A. Dowds, 2002. Acid stress in the food phathogen Bacillus cereus. J. Appl. Microbiol. 92: 404-414
  5. Cassin, P.E. 1974. Isolation, growth, and physiology of acidophilic Chlamydomonads. J. Phycol. 10: 439-447
  6. Chuan, M.C., G.Y. Shu and J.C. Liu. 1996. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 90:543-556
  7. Doring, M., P.J. Mc Auley and H. Hodge, 1997. Effect of pH on growth and carbon metabolism of maltose releasing Chlorella (Chlorophyta). Eur. J. Phycol. 32: 19-24
  8. Elzenga, J.T.M., H.B.A. Prins and J. Stefels. 2000. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystisglobosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique. Limnol. Oceanogr. 45: 372-380
  9. Foster, J.W. 1995. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit. Rev. Microbiol. 21: 215-237
  10. Geib, K., D. Golldack and H. Gimmler. 1996. Is there a requirement for an external carbonic anhydrase in the extremely acid-resistant green alga Dunaliella acidophila? Eur. J. Phycol. 31: 273-284
  11. Gimmler, H. and S. Slovik. 1995. The mode of uptake of dissolved inorganic carbon in the extremely acid resistant green alga Dunaliella acidophila. Theoretical considerations and experimental observations. Plant Physiol. Biochem. 33: 655-664
  12. Golldack, D., K.-J. Dietz and H. Gimmler. 1995. Salt-dependent protein composition in the Halotolerant green alga, Dunaliella parva. Bot. Acta. 108:227-232
  13. Haglund, K.M. Bjork, Z. Ramazanov, G. Garc a-Reina and M. Peders$\'e$. 1992. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187: 275-281
  14. Hargreaves, J.W., E.J.H. Lloyd and B.A. Whitton. 1974. Algal vegetation of highly acidic streams. Br. Phycol. J. 9: 219-220
  15. Hargreaves, J.W. and B.A. Whitton. 1976. Effect of pH on growth of acid stream algae. Br. Phycol. J. 11: 215-223
  16. Hillebrand, H., C.-D. Durslen, D. Kirschtel, U. Pollingher and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403-424
  17. Husic, H.D. 1990. Chemical cross linking of periplasmatic carbonic anhdrase from Chlamydomonas reinhardtii. In Current Research in Photosynthesis, vol. IV. ed. Baltscheffsky, B., Kluwer, Dordrecht, pp. 493-499
  18. Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 197-194
  19. Laemmli, U.K. 1970. Cleavage of structure proteins during the assembly of the head of the bacteriophage T4. Nature, 227: 680-685
  20. Mercado, J.M., F.L. Figueroa, F.X. Niell and L. Axelsson. 1997. A new method for stimating external carbonic anhydrase activity in macroalgae. J. Phycol. 33: 999-1006
  21. Pentecost, A. 1982. The distribution of Euglena mutabilis in sphagna, with reference to the Malham Tarn North Fen. Field Stud. 5: 591-606
  22. Raven, J.A. 1990. Sensing pH? Plant Cell Environ. 13: 721-729
  23. Riemann, B., P. Simonsen and L. Stensgaard. 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J. Plank. Res. 11: 1037-1045
  24. Roeske, C.A., J.L. Widholm and W.L. Ogren. 1990. Is carbonic anhydrase required for photosynthe-sis? In Current Research in Photosynthesis, vol. IV. ed. Baltscheffsky, B., Kluwer, Dordrecht. pp. 475-478
  25. Sheath, R.G., M. Havas, J.A. Hellebust and T.C. Hutchinson. 1982. Effects of Long-Term Natural Acidification on the Algal Communities of Tundra Ponds at the Smokiong Hills, N.W.T., Canada. Can. J. Bot. 60: 58-72
  26. Tatsuzawa, H. and E. Takizawa. 1996. Fatty acid and lipid composition of the acidiophilic green alga Chlamydomonas sp. J. Phycol. 32: 598-601