DOI QR코드

DOI QR Code

RESEARCH PAPERS : REDUCTIVE DECHLOZINATION OF CHLORINATED BIPHENYLS BY PALLADIUM COATED ZINC


Abstract

Keywords

References

  1. Erickson, M. D., Analytical Chemistry of PCBs, Lewis Publishers, New York, pp. 2-25 (1997).
  2. Shaub, W. M. and Tsang, W., "Dioxin formation in incinerators," Environ. Sci. Technol., 17, 721-730 (1983). https://doi.org/10.1021/es00118a007
  3. Arnold, W. A., Ball, W. P., and Roberts, A. L., "Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control," J. Contam. Hydrol., 40, 183-200 (1999). https://doi.org/10.1016/S0169-7722(99)00045-5
  4. Burris, D. R., Delcomyn, C. A., Smith, M. H., and Roberts, A. L., "Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems," Environ. Sci. Technol., 30, 3047-3052 (1996). https://doi.org/10.1021/es960116o
  5. Choe, S., Chang, Y.-Y., Hwang, K.-Y., and Khim, J., "Kinetics of reductive denitrification by nanoscale zero-valent iron," Chemosphere, 41, 1307-1311 (2000). https://doi.org/10.1016/S0045-6535(99)00506-8
  6. Johnson, T. L., Scherer, M. M., and Tratnyek, P. G., "Kinetics of halogenated organic compound degradation by iron metal," Environ. Sci. Technol., 30(8), 2634-2640 (1996). https://doi.org/10.1021/es9600901
  7. Kim, Y.-H., Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: modified metals and electron mediators. Ph. D. Dissertation. Texas A&M University, College Station (1999).
  8. Kim, Y.-H. and Carraway, E. R., "Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons," Environ. Sci. Technol., 34 (10), 2014-2017 (2000). https://doi.org/10.1021/es991129f
  9. Scherer, M. M., Richter, S., Valentine, R. L., and Alvarez, P. J. J., "Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up," Critical Reviews in Environmental Science and Technology, 30(3), 363-411 (2000). https://doi.org/10.1080/10643380091184219
  10. Caruana, A., "1,200-Foot permeable reactive barrier in use at the Denver Federal Center," Ground Water Currents, March 1998(27), (1998).
  11. Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., and Puis, R. W., "Treatment of inorganic contaminants using permeable reactive barriers," J Contam. Hydrol., 45(1-2), 123-137 (2000). https://doi.org/10.1016/S0169-7722(00)00122-4
  12. Ludwig, R. D., McGregor, R. G., Blowes, D. W., Benner, S. G., and Mountjoy, K., "A permeable reactive barrier for treatment of heavy metals," Ground Water, 40(1), 59-66 (2002). https://doi.org/10.1111/j.1745-6584.2002.tb02491.x
  13. Morrison, S. J., Metzler, D. R., and Carpenter, C. E., "Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron," Environ. Sci. Technol., 35(2), 385-390 (2001). https://doi.org/10.1021/es001204i
  14. Campbell, T. J., Burris, D. R., Roberts, A. L., and Wells, J. R., "Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system," Environ. Toxicol. Chem., 16(4),625-630 (1997).
  15. Gillham, R. W. and O'Hannesin, S. F., "Enhanced degradation of halogenated aliphatics by zero-valent iron," Ground Water, 32(6), 958-967 (1994). https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  16. Matheson, L. J. and Tratnyek, P. G., "Reductive dehalogenation of chlorinated methanes by iron metal," Environ. Sci. Technol., 28(12), 2045-2053 (1994). https://doi.org/10.1021/es00061a012
  17. Chuang, F., Larson, R. A., and Wessman, M. S., "Zero-valent iron-promoted dechlorination of polychlorinated biphenyls," Environ. Sci. Technol., 29, 2460-2463 (1995). https://doi.org/10.1021/es00009a044
  18. Grittini, C., Rapid reductive dechlorination of environmentally hazardous aromatic compounds and pesticides. Ph.D. Dissertation. The University of Arizona, Tucson (1997).
  19. Kim, Y. H., Joo, D. J., Shin, W. S., Kim, M., Choi, S. J., and Ko, S.-O., "Reductive Dechlorination of Chlorinated Biphenyls by Palladized Zero-Valent Metals," Chemosphere, Submitted (2002).
  20. Grittini, C., Malcomson, M., Fernando, Q., and Korte, N., "Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system," Environ. Sci. Technol., 29(11), 2898-2900 (1995). https://doi.org/10.1021/es00011a029
  21. Barrows, S. E., Cramer, C. J., Truhlar, D. G., Elovitz, M. S., and Weber, E. J., "Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution," Environ. Sci. Technol., 30, 3028-3038 (1996). https://doi.org/10.1021/es960004x
  22. Korte, N. E., Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B., and Fernando, Q., "Field application of palladized iron fro the dechlorination of trichloroethene," Waste Management, 20, 687-694 (2000). https://doi.org/10.1016/S0956-053X(00)00037-4
  23. Liang, L., Korte, N., Goodlaxson, J. D., Clausen, J., Fernando, Q., and Mufiikian, R., "Byproduct formation during the reduction of TCE by Zero-Valent Iron and Palladized Iron," Groundwater Remediation, 1,122-127 (1997).

Cited by

  1. SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 1. Comparison of Aerobic vs. Anaeriobic Synthesis and Characterization of Nanoparticles vol.10, pp.4, 2005, https://doi.org/10.4491/eer.2005.10.4.165
  2. SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 2. Effects of Synthesis Conditions on Iron Reactivities vol.10, pp.4, 2002, https://doi.org/10.4491/eer.2005.10.4.174