References
- Erickson, M. D., Analytical Chemistry of PCBs, Lewis Publishers, New York, pp. 2-25 (1997).
- Shaub, W. M. and Tsang, W., "Dioxin formation in incinerators," Environ. Sci. Technol., 17, 721-730 (1983). https://doi.org/10.1021/es00118a007
- Arnold, W. A., Ball, W. P., and Roberts, A. L., "Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control," J. Contam. Hydrol., 40, 183-200 (1999). https://doi.org/10.1016/S0169-7722(99)00045-5
- Burris, D. R., Delcomyn, C. A., Smith, M. H., and Roberts, A. L., "Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems," Environ. Sci. Technol., 30, 3047-3052 (1996). https://doi.org/10.1021/es960116o
- Choe, S., Chang, Y.-Y., Hwang, K.-Y., and Khim, J., "Kinetics of reductive denitrification by nanoscale zero-valent iron," Chemosphere, 41, 1307-1311 (2000). https://doi.org/10.1016/S0045-6535(99)00506-8
- Johnson, T. L., Scherer, M. M., and Tratnyek, P. G., "Kinetics of halogenated organic compound degradation by iron metal," Environ. Sci. Technol., 30(8), 2634-2640 (1996). https://doi.org/10.1021/es9600901
- Kim, Y.-H., Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: modified metals and electron mediators. Ph. D. Dissertation. Texas A&M University, College Station (1999).
- Kim, Y.-H. and Carraway, E. R., "Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons," Environ. Sci. Technol., 34 (10), 2014-2017 (2000). https://doi.org/10.1021/es991129f
- Scherer, M. M., Richter, S., Valentine, R. L., and Alvarez, P. J. J., "Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up," Critical Reviews in Environmental Science and Technology, 30(3), 363-411 (2000). https://doi.org/10.1080/10643380091184219
- Caruana, A., "1,200-Foot permeable reactive barrier in use at the Denver Federal Center," Ground Water Currents, March 1998(27), (1998).
- Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., and Puis, R. W., "Treatment of inorganic contaminants using permeable reactive barriers," J Contam. Hydrol., 45(1-2), 123-137 (2000). https://doi.org/10.1016/S0169-7722(00)00122-4
- Ludwig, R. D., McGregor, R. G., Blowes, D. W., Benner, S. G., and Mountjoy, K., "A permeable reactive barrier for treatment of heavy metals," Ground Water, 40(1), 59-66 (2002). https://doi.org/10.1111/j.1745-6584.2002.tb02491.x
- Morrison, S. J., Metzler, D. R., and Carpenter, C. E., "Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron," Environ. Sci. Technol., 35(2), 385-390 (2001). https://doi.org/10.1021/es001204i
- Campbell, T. J., Burris, D. R., Roberts, A. L., and Wells, J. R., "Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system," Environ. Toxicol. Chem., 16(4),625-630 (1997).
- Gillham, R. W. and O'Hannesin, S. F., "Enhanced degradation of halogenated aliphatics by zero-valent iron," Ground Water, 32(6), 958-967 (1994). https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
- Matheson, L. J. and Tratnyek, P. G., "Reductive dehalogenation of chlorinated methanes by iron metal," Environ. Sci. Technol., 28(12), 2045-2053 (1994). https://doi.org/10.1021/es00061a012
- Chuang, F., Larson, R. A., and Wessman, M. S., "Zero-valent iron-promoted dechlorination of polychlorinated biphenyls," Environ. Sci. Technol., 29, 2460-2463 (1995). https://doi.org/10.1021/es00009a044
- Grittini, C., Rapid reductive dechlorination of environmentally hazardous aromatic compounds and pesticides. Ph.D. Dissertation. The University of Arizona, Tucson (1997).
- Kim, Y. H., Joo, D. J., Shin, W. S., Kim, M., Choi, S. J., and Ko, S.-O., "Reductive Dechlorination of Chlorinated Biphenyls by Palladized Zero-Valent Metals," Chemosphere, Submitted (2002).
- Grittini, C., Malcomson, M., Fernando, Q., and Korte, N., "Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system," Environ. Sci. Technol., 29(11), 2898-2900 (1995). https://doi.org/10.1021/es00011a029
- Barrows, S. E., Cramer, C. J., Truhlar, D. G., Elovitz, M. S., and Weber, E. J., "Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution," Environ. Sci. Technol., 30, 3028-3038 (1996). https://doi.org/10.1021/es960004x
- Korte, N. E., Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B., and Fernando, Q., "Field application of palladized iron fro the dechlorination of trichloroethene," Waste Management, 20, 687-694 (2000). https://doi.org/10.1016/S0956-053X(00)00037-4
- Liang, L., Korte, N., Goodlaxson, J. D., Clausen, J., Fernando, Q., and Mufiikian, R., "Byproduct formation during the reduction of TCE by Zero-Valent Iron and Palladized Iron," Groundwater Remediation, 1,122-127 (1997).
Cited by
- SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 1. Comparison of Aerobic vs. Anaeriobic Synthesis and Characterization of Nanoparticles vol.10, pp.4, 2005, https://doi.org/10.4491/eer.2005.10.4.165
- SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 2. Effects of Synthesis Conditions on Iron Reactivities vol.10, pp.4, 2002, https://doi.org/10.4491/eer.2005.10.4.174