JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 15, No.1, June 2002

EXPANSIVITY OF A CONTINUOUS SURJECTION

SUNG KYU CHOI*, CHIN-KU CHU** AND JONG SUH PARK***

ABSTRACT. We introduce the notion of expansivity for a continuous surjection on a compact metric space, as the positively and negatively expansive map. We also prove that some well-known properties about positively expansive maps in [2] hold by using our definition.

1. Introduction

The study of positively expansive maps is an interesting subject in topological dynamics. Definition of positively extensive maps is presented in [2,9] as the following : Let (X,d) be a metric space. A continuous surjection $f: X \to X$ is called *positively expansive* if there exists a constant e > 0 such that if $x \neq y$ in X then $d(f^n(x), f^n(y)) >$ e for some non-negative integer n (e is called an expansive constant for f). For compact spaces, this is independent of the compatible metrics used, although not the expansive constants. Also, a homeomorphism $f: X \to X$ is expansive if there is a constant e > 0 such that $x \neq y$ in X implies $d(f^n(x), f^n(y)) > e$ for some integer n. Expansivity is very often appearing in several branch of the theory of dynamical systems, and it is known that every axiom A diffeomorphism restricted to the non-wandering set possesses it [10].

We introduce the concept of expansivity for a continuous surjection as the positively and negatively expansive map, that is, for a compact

supported by Korea Research Foundation Grant (KRF-99-015-DI0011)

Received by the editors on March 30, 2002.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 34C35, 37C15 secondary 54H20.

Key words and phrases: Positively expansive map, Property B, Expansive map.

metric space (X, d), we say that a continuous surjection $f : X \to X$ is *expansive* if

(i) for any $\varepsilon > 0$ and $x \in X$, there exists a $\delta > 0$ such that $d(f(x), y) < \delta$ for $y \in X$ implies $B(x, \varepsilon) \cap f^{-1}(y) \neq \emptyset$, where $B(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\}$,

(ii) there exists a constant e > 0 such that for $x, y \in X$,

$$d(f^n(x), f^n(y)) \le e$$

for all $n \in \mathbb{Z}$ implies x = y.

We call the condition (i) as Property B.

In this paper we examine some properties about Property B and show that some well-known properties about positively expansive maps in [2] hold via our definition. Furthermore, we prove that expansivity is preserved under a topological conjugacy.

2. Property B

Let (X, d) be a metric space and $f : X \to X$ be a continuous surjection. We say that f has *Property B* if for any $\varepsilon > 0$ and $x \in X$ there exists a $\delta > 0$ such that $d(f(x), y) < \delta$ for $y \in X$ implies that $B(x, \varepsilon) \cap f^{-1}(y) \neq \emptyset$, where $B(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\}$.

Example. Let $X = [-1, \frac{1+\sqrt{5}}{2}]$ be a subset of the Euclidean space \mathbb{R} . Then the map $f: X \to X$ defined by $f(x) = x^4 - 2x^2$ does not have Property B.

Before introducing the concept of expansivity for a continuous surjection we investigate some properties about Property B.

THEOREM 2.1. (1) Every local homeomorphism has Property B. (2) Every continuous surjection which has Property B is an open map.

8

(3) Let X be a connected compact metric space and $f: X \to X$ be any continuous map. If f has Property B, then f is a surjection.

Proof. (1) Let $f: X \to X$ be a local homeomorphism and $x \in X$. There exists a neighborhood U of x such that $f|_U: U \to f(U)$ is a homeomorphism. Also, there exists an $\nu > 0$ such that $B(x,\nu) \subset U$. For every ε with $0 < \varepsilon < \nu$ we have $B(f(x), \delta) \subset f(B(x,\varepsilon))$ for some $\delta > 0$ since $f(B(x,\varepsilon))$ is a neighborhood of f(x). Since y = f(z)for some $z \in B(x,\varepsilon), z \in B(x,\varepsilon) \cap f^{-1}(y)$. This implies that f has Property B.

(2) Let U be an open subset of X and $y \in f(U)$. Then y = f(x)for some $x \in U$ and $B(x,\varepsilon) \subset U$ for some $\varepsilon > 0$. There exists a $\delta > 0$ such that $d(f(x),z) < \delta$ implies $B(x,\varepsilon) \cap f^{-1}(z) \neq \emptyset$ by Property B. Since $B(x,\varepsilon) \cap f^{-1}(z) \neq \emptyset$ for every $z \in B(y,\delta)$, we have $z = f(w) \in f(B(x,\varepsilon)) \subset f(U)$ for some $w \in B(x,\varepsilon) \cap f^{-1}(z)$. It follows that $B(y,\delta) \subset f(U)$ and f(U) is an open set in X.

(3) In view of (2) f(X) is an open set. Also, f(X) is a closed set since f is continuous. Hence f(X) = X by the connectedness of X.

Remark. When X is a compact metric space any positively expansive open map $f: X \to X$ is a local homeomorphism [2, p. 50].

Let X be a compact metric space. A map $\alpha : X \to \mathbb{R}$ is said to be *upper semicontinuous* if for every $\varepsilon > 0$ and $x \in X$, there exists a neighborhood U of x such that $\alpha(U) \subset (-\infty, \alpha(x) + \varepsilon)$. And a map $\beta : X \to \mathbb{R}$ is said to be *lower semicontinuous* if for every $\varepsilon > 0$ and $x \in X$, there exists a neighborhood V of x such that $\beta(V) \subset (\beta(x) - \varepsilon, \infty)$.

We need the following Dowker's Lemma.

LEMMA 2.2. [7] Suppose that α and ω are, respectively, upper and

9

lower semicontinuous on a paracompact space, and that $\alpha(x) < \omega(x)$ for every x. Then there is a continuous map $\tau(x)$ with $\alpha(x) < \tau(x) < \omega(x)$ for every x.

THEOREM 2.3. Let (X, d) be a compact metric space. If $f: X \to X$ has Property B, then there exists a continuous map $\delta: X \to (0, \infty)$ such that for every $x \in X$, $d(f(x), y) < \delta(x)$ implies $B(x, \varepsilon) \cap f^{-1}(y) \neq \emptyset$.

Proof. For any $\varepsilon > 0$, define a map $\beta : X \to (0, \infty)$ by

$$\beta(x) = \sup\{\eta > 0 : d(f(x), y) < \eta \text{ implies } B(x, \alpha) \cap f^{-1}(y) \neq \emptyset$$

for some $0 < \alpha < \varepsilon\}.$

The map β is well-defined since there exists an $\eta > 0$ such that $d(f(x), y) < \eta$ implies $B(x, \alpha) \cap f^{-1}(y) \neq \emptyset$ by Property B, and so $\beta(x) \ge \eta > 0$.

Let $x \in X$ and $h < \beta(x)$. Then $h < \eta$ for some $\eta > 0$ and $d(f(x), y) < \eta$ implies $B(x, \alpha) \cap f^{-1}(y) \neq \emptyset$ for some $0 < \alpha < \varepsilon$. If we choose γ with $h < \gamma < \eta$, then there exists a neighborhood V of x such that $f(V) \subset B(f(x), \eta - \gamma)$. Also, we choose ξ with $\alpha < \xi < \varepsilon$ and put $U = B(x, \xi - \alpha) \cap V$. Then $B(x, \alpha) \subset B(y, \xi)$ for every $y \in U$. If $d(f(y), z) < \gamma$, then we have

$$d(f(x),z) \leq d(f(x),f(y)) + d(f(y),z) < \eta.$$

Since $B(x,\alpha) \cap f^{-1}(z) \subset B(y,\xi) \cap f^{-1}(z)$, we have $B(y,\xi) \cap f^{-1}(z) \neq \emptyset$. There exists ξ with $0 < \alpha < \xi < \varepsilon$ such that $d(f(x),z) < \gamma$ implies $B(y,\xi) \cap f^{-1}(z) \neq \emptyset$. It follows that $\beta(y) \ge \gamma > h$. Thus β is lower semicontinuous.

Now, we define a map O on X by O(x) = 0. Since $O(x) < \beta(x)$ for every $x \in X$, the map O is upper semicontinuous. Therefore there

exists a continuous map $\delta : X \to (0, \infty)$ such that $0 < \delta(x) < \beta(x)$ by Lemma 2.2. This completes the proof.

Let (X, d) be a compact metric space and C(X) be a set of all nonempty closed subsets of X. C(X) becomes a compact metric space with the Hausdorff metric H, i.e.,

$$H(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\}$$

for $A, B \in C(X)$. Note that d(x, y) = H(x, y) for all $x, y \in X$ if we denote one point set by a point.

THEOREM 2.4. Every continuous surjection $f: X \to X$ has Property B if and only if $f^{-1}: C(X) \to C(X)$ is uniformly continuous.

Proof. Let $\varepsilon > 0$ be given. Then, in view of Theorem 2.3, there exists a continuous map $\delta : X \to (0,\infty)$ such that $d(f(x),y) < \delta(x)$ implies $B(x,\varepsilon) \cap f^-(y) \neq \emptyset$. Put $\delta = \min\{\delta(x) > 0 : x \in X\}$. Let $A, B \in C(X)$ with $H(A, B) < \delta$. Then $A \subset B(B, \delta)$ and $B \subset B(A, \delta)$. Let $x \in f^{-1}(A)$. Then $f(x) \in A \subset B(B, \delta)$. There exists an $y \in B$ such that $d(f(x),y) < \delta \leq \delta(x)$. Since f has Property B, we have $B(x,\varepsilon) \cap f^{-1}(y) \neq \emptyset$, say $z \in B(x,\varepsilon) \cap f^{-1}(y)$. Then $d(x,z) < \varepsilon$ and $z \in f^{-1}(y) \subset f^{-1}(B)$. Hence $x \in B(f^{-1}(B),\varepsilon)$ and so $f^{-1}(A) \subset$ $B(f^{-1}(B),\varepsilon)$. Similarly, we have $f^{-1}(B) \subset B(f^{-1}(A),\varepsilon)$. Therefore $H(f^{-1}(A), f^{-1}(B)) < \varepsilon$, which implies f^{-1} is uniformly continuous.

For the converse let $\varepsilon > 0$ and $x \in X$. Then there exists a $\delta > 0$ such that $H(A, B) < \delta$ implies $H(f^{-1}(A), f^{-1}(B)) < \varepsilon$. If we let $d(f(x), y) = H(f(x), y) < \delta$, then $H(f^{-1}(f(x), f^{-1}(y)) < \varepsilon$. Since $x \in f^{-1}(f(x)) \subset B(f^{-1}(y), \varepsilon), \ d(x, z) < \varepsilon$ for some $z \in f^{-1}(y)$, and so $z \in B(x, \varepsilon) \cap f^{-1}(y)$. It follows that $B(x, \varepsilon) \cap f^{-1}(y) \neq \emptyset$. This means that f has Property B. \Box

3. Expansivity

We define the concept of expansivity for a continuous surjection.

Definition. Let (X, d) be a compact metric space. A continuous surjection $f: X \to X$ is *expansive* if

(i) f has Property B.

(ii) There exists a constant e > 0 such that for $x, y \in X$,

$$d(f^n(x), f^n(y)) \le e$$

for all $n \in \mathbb{Z}$ implies x = y. Such a number e is called an expansive constant for f.

There are well-known properties about positive expansivity for a continuous surjection in [2, Chapter 2]. We prove some of these properties by using the above definition. Throughout this section (X, d) is a compact metric space and $f: X \to X$ is a continuous surjection.

THEOREM 3.1. If $f : X \to X$ is expansive, then $f^k : X \to X$ is also expansive for all integer k > 1.

Proof. By Theorem unithm, $f^{-1} : C(X) \to C(X)$ is continuous and so $(f^k)^{-1} = (f^{-1})^k : C(X) \to C(X)$ is continuous. Thus f^k has Property B by Theorem 2.4.

For the converse let e_f be an expansive constant for f. There exists $0 < e < e_f$ such that $d(f^i(a), f^i(b)) \le e_f$ for all $i = 1, 2, \dots, k-1$ when $d(a, b) \le e$. Suppose that $d(f^{nk}(x), f^{nk}(y)) \le e$ for all $n \in \mathbb{Z}$. When $n \ge 0$, we have

$$d(f^{i}(f^{nk}(x)), f^{i}(f^{nk}(y))) = d(f^{nk+i}(x), f^{nk+i}(y)) \le e_{f}$$

for all $i = 1, 2, \dots, k - 1$. When n < 0,

$$d(a,b) = d(f^{nk}(x), f^{nk}(y))$$

12

for some $a \in f^{nk}(x)$ and $b \in f^{nk}(y)$. We obtain

$$d(f^{nk+i}(x), f^{nk+i}(y)) \le d(f^i(a), f^i(b)) \le e_f$$

since $f^{i}(a) \in f^{nk+i}(x)$ and $f^{i}(b) \in f^{nk+i}(y)$ for 0 < i < k. Therefore $d(f^{n}(x), f^{n}(y)) \leq e_{f}$ for all $n \in \mathbb{Z}$. This implies that x = y. \Box

Let (X_1, d_1) and (X_2, d_2) be compact metric spaces. We can give a metric d on $X_1 \times X_2$, which is compatible with the product topology of $X_1 \times X_2$, defined by

$$d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}$$

for all $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$.

THEOREM 3.2. Let $f_1 : X_1 \to X_1$ and $f_2 : X_2 \to X_2$ be continuous surjections. If f_1 and f_2 are expansive, then $f_1 \times f_2$ is also expansive.

Proof. To show that $f_1 \times f_2$ has Property B let $\varepsilon > 0$ and $(x_1, x_2) \in X_1 \times X_2$. There exist $\delta_1 > 0$ and $\delta_2 > 0$ such that

$$d_1(f_1(x_1), y_1) < \delta_1 \text{ implies } B_{d_1}(x_1, \varepsilon) \cap f_1^{-1}(y_1) \neq \emptyset$$

and

$$d_2(f_2(x_2), y_2) < \delta_2 \text{ implies } B_{d_2}(x_2, \varepsilon) \cap f_2^{-1}(y_2) \neq \emptyset$$

Take $\delta = \min\{\delta_1, \delta_2\} > 0$. Let $d((f_1 \times f_2)(x_1, x_2), (y_1, y_2)) < \delta$. Then

$$d_1(f_1(x_1), y_1) \le d((f_1 \times f_2)(x_1, x_2), (y_1, y_2)) < \delta \le \delta_1,$$

$$d_2(f_2(x_2), y_2) \le d((f_1 \times f_2)(x_1, x_2), (y_1, y_2)) < \delta \le \delta_2.$$

Thus we have

$$z_1 \in B_{d_1}(x_1,\varepsilon) \cap f_1^{-1}(y_1), z_2 \in B_{d_2}(x_2,\varepsilon) \cap f_2^{-1}(y_2)$$

for some $z_1 \in X_1$ and $z_2 \in X_2$. Since $d_1(x_1, z_1) < \varepsilon$ and $d_2(x_2, z_2) < \varepsilon$, we obtain $d((x_1, x_2), (z_1, z_2)) < \varepsilon$. Since $f_1(z_1) = y_1$ and $f_2(z_2) = y_2, (f_1 \times f_2)(z_1, z_2) = (y_1, y_2)$. Hence $(z_1, z_2) \in B_{d_1}((x_1, x_2), \varepsilon) \cap (f_1 \times f_2)^{-1}(y_1, y_2)$ and so $f_1 \times f_2$ has Property B by Theorem 2.4

Now, let $e_1 > 0$ and $e_2 > 0$ be expansive constant for f_1 and f_2 , respectively. Suppose that

$$d((f_1 \times f_2)^n(x_1, x_2), (f_1 \times f_2)^n(y_1, y_2)) \le e \text{ for all } n \in \mathbb{Z},$$

where $e = \min\{e_1, e_2\} > 0$. When $n \ge 0$, we have

$$d_1(f_1^n(x_1), f_1^n(y_1)) \le d((f_1^n(x_1), f_2^n(x_2)), (f_1^n(y_1), f_2^n(y_2)))$$

= $d((f_1 \times f_2)^n(x_1, x_1), (f_1 \times f_2^n)(y_1, y_2)))$
 $\le e \le e_1.$

Similarly, we have $d_2(f_2^n(x_2), f_2^n(y_2)) \le e_2$.

Suppose n < 0. There exist $(a_1, a_2) \in (f_1 \times f_2)^n(x_1, x_2)$ and $(b_1, b_2) \in (f_1 \times f_2)^n(y_1, y_2)$ such that

$$d((a_1, a_2), (b_1, b_2)) = d_1((f_1 \times f_2)^n (x_1, x_2), (f_1 \times f_2)^n (y_1, y_2))$$

Since $x_1 = f_1^{-n}(a_1)$ and $x_2 = f_2^{-n}(a_2)$, we obtain

$$(x_1, x_2) = (f_1^{-n}(a_1), f_2^{-n}(a_2)) = (f_1 \times f_2)^{-n}(a_1, a_2).$$

It follows that $(a_1, a_2) \in (f_1 \times f_2^n)(x_1, x_2)$. Also, we have $(b_1, b_2) \in (f_1 \times f_2)^n(y_1, y_2)$ by the same manner. Note that

$$d_1(f_1^n(x_1), f_1^n(y_1)) \le d_1(a_1, b_1) \le d((a_1, a_2), (b_1, b_2))$$

= $d((f_1 \times f_2)^n(x_1, x_2), (f_1 \times f_2)^n(y_1, y_2))$
 $\le e \le e_1$

and

$$d_2(f_2^n(x_2), f_2^n(y_2)) \le e_2.$$

Therefore we have

$$d_1(f_1^n(x_1), f_1^n(y_1)) \le e \text{ and } d_2(f_2^n(x_2), f_2^n(y_2)) \le e_2$$

for all $\in \mathbb{Z}$. Consequently, we have $(x_1, x_2) = (y_1, y_2)$ and the expansivity of $f_1 \times f_2$ follows.

Let (X, d) and (Y, ρ) be compact metric spaces. A continuous surjection $f: X \to X$ is said to be *topologically conjugate* to a continuous surjection $g: Y \to Y$ if there exists a homeomorphism $h: X \to Y$ such that $h \circ f = g \circ h$.

We prove that expansivity is preserved under a topological conjugacy.

THEOREM 3.3. Suppose that f is topologically conjugate to g. If f is expansive, then g is also expansive.

Proof. Let $\varepsilon > 0$ and $y \in Y$. Since there exists a homeomorphism $h: X \to Y$ such that $h \circ f = g \circ h$ and h is uniformly continuous, there exists a $\delta > 0$ such that $d(a,b) < \delta$ implies $\rho(h(a),h(b)) < \varepsilon$. Putting $x = h^{-1}(y)$, we have $B_d(x,\delta) \cap f^{-1}(z) \neq \emptyset$ when $d(f(x),z) < \eta$ for some $\eta > 0$. Also, $d(h^{-1}(a),h^{-1}(b)) < \eta$ when $\rho(a,b) < \xi$ for some $\xi > 0$ by the uniform continuity of h^{-1} .

Now, let $\rho((g(y), w)) < \xi$ for $w \in Y$. Then

$$d(h^{-1}(g(y)), h^{-1}(w)) = d(f(h^{-1}(y), h^{-1}(w)))$$
$$= d(f(x), h^{-1}(w)) < \eta$$

and thus $B_d(x,\delta) \cap f^{-1}(h^{-1}(w)) \neq \emptyset$, say $u \in B_d(x,\delta) \cap f^{-1}(h^{-1}(w))$. Hence $h(u) \in B_\rho(y,\varepsilon) \cap g^{-1}(w)$ since h(f(u)) = g(h(u)) = w and $\rho(h(x), h(u)) = \rho(y, h(u)) < \varepsilon$ when $d(x, u) < \delta$. This implies that g has Property B.

Now, let e_f be an expansive constant for f. There exists an e > 0 such that $d(h^{-1}(a), h^{-1}(b)) \leq e_f$ if $\rho(a, b) \leq e$, by the uniform continuity of h^{-1} . Suppose that $\rho(g^n(x), g^n(y)) \leq e$ for all $n \in \mathbb{Z}$. We claim that

$$d(f^{n}(h^{-1}(x)), f^{n}(h^{-1}(y))) \le e_{f}$$

for all $z \in \mathbb{Z}$. For the case $n \ge 0$, it easily follows since

$$d(f^{n}(h^{-1}(x)), f^{n}(h^{-1}(y))) = d(h^{-1}(g^{n}(x)), h^{-1}(g^{n}(y))) \le e_{f}.$$

Let n < 0. There exist $a \in g^n(x)$ and $b \in g^n(y)$ such that $\rho(a, b) = \rho(g^n(x), g^n(y))$. Since

$$h^{-1}(x) = h^{-1}(g^{-n}(a)) = f^{-n}(h^{-1}(a))$$

and

$$h^{-1}(y) = h^{-1}(g^{-n}(b)) = f^{-n}(h^{-1}(b)),$$

we have $h^{-1}(a) \in f^n(h^{-1}(x))$ and $h^{-1}(b) \in f^n(h^{-1}(y))$. Now, we get

$$d(f^{n}(h^{-1}(x)), f^{n}(h^{-1}(y))) \le d(h^{-1}(a), h^{-1}(b)) \le e_{f}$$

since $\rho(a,b) = \rho(g^n(x), g^n(y)) \le e$ and $d(h^{-1}(a), h^{-1}(b)) \le e_f$.

Therefore $h^{-1}(x) = h^{-1}(y)$ and so x = y. This means that g is expansive. This completes the proof.

For a continuous surjection $f: X \to X$, we define a set

$$X_f = \{(x_i) \in \prod_{-\infty}^{\infty} X : f(x_i) = x_{i+1}\}$$

EXPANSIVITY OF A CONTINUOUS SURJECTION

and give a metric ρ on X_f defined by

$$\rho(x,y) = \sum_{i=-\infty}^{i=\infty} \frac{d(x_i,g_i)}{2^{|i|}}$$

for $x = (x_i), y = (y_i) \in X_f$.

A homeomorphism $\sigma : X_f \to X_f$ defined by $\sigma((x_i)) = (f(x_i))$ is called the *shift map* determined by f.

LEMMA 3.4. The shift map $\sigma : X_f \to X_f$ is expansive if and only if there exists an e > 0 such that for $(x_i), (y_i) \in X_f$, if $d(x_i, y_i) \leq e$ for all $i \in \mathbb{Z}$, then $(x_i) = (y_i)$.

Proof. Let e > 0 be an expansive constant for σ . Let $(x_i), (y_i) \in X_f$ with $d(x_i, y_i) \leq \frac{e}{3}$ for all $i \in \mathbb{Z}$. Then, for all $n \in \mathbb{Z}$

$$\rho(\sigma^n(x_i), \sigma^n(y_i)) = \sum_{-\infty}^{\infty} \frac{d(\sigma^n((x_i))_k, \sigma^n((y_i))_k)}{2^{|k|}}$$
$$= \sum_{-\infty}^{\infty} \frac{d(x_{n+k}, y_{n+k})}{2^{|k|}}$$
$$\leq \sum_{-\infty}^{\infty} \frac{\left(\frac{e}{3}\right)}{(2^{|k|})}.$$

Hence $(x_i) = (y_i)$.

Assume that there exists an e > 0 such that for $(x_i), (y_i) \in X_f$, $d(x_i, y_i) \leq e$ implies $(x_i) = (y_i)$. Let $(x_i), (y_i) \in X_f$ with $(x_i) \neq (y_i)$. Then there exists an integer k such that $d(x_k, y_k) > e$. Thus we have

$$\rho(\sigma^{k}((x_{i})), \sigma^{k}((y_{i}))) \geq d(\sigma^{k}((x_{i}))_{0}, \sigma^{k}((y_{i}))_{0}) = d(x_{k}, y_{k}) > e.$$

Therefore σ is expansive with an expansive constant e.

17

 \Box

LEMMA 3.5. If f is expansive, then σ is expansive.

Proof. Since f is expansive, there exists an e > 0 such that if $d(f^n(x), f^n(y)) < e$ for all $z \in \mathbb{Z}$, then x = y. Let $(x_i), (y_i) \in X_f$ with $d(x_i, y_i) \leq e$ for all $i \in \mathbb{Z}$. For every $k \in \mathbb{Z}$ and $n \geq 0$, since $f^n(x_{k-n}) = x_k$ and $f^n(y_{k-n}) = y_k$, we get $x_{k-n} \in f^{-n}(x_k)$ and $y_{k-n} \in f^{-n}(y_k)$. Thus

$$d(f^{-n}(x_k), f^{-n}(y_k)) \le d(x_{k-n}, y_{k-n}) \le e$$

and

$$d(f^n(x_k), f^n(y_k)) = d(x_{k+n}, y_{k+n}) \le e.$$

Hence $(x_i) = (y_i)$. Therefore σ is expansive by Lemma 3.4.

Let

$$\underbrace{\lim}_{0}(X,f) = \{(x_i) \in \prod_{0}^{\infty} X : f(x_{i+1}) = x_i \text{ for all } i \ge 0\}$$

and define a map $\tau: \underline{\lim}(X, f) \to \underline{\lim}(X, f)$ by

$$\tau(x_0,x_1,\cdots)=(f(x_0),x_0,x_1,\cdots).$$

Then the map τ is a homeomorphism.

Define a map $\varphi: X_f \to \underline{\lim}(X, f)$ by

$$\varphi(\cdots, x_{-1}, x_0, x_1, \cdots) = (x_0, x_{-1}, x_{-2}, \cdots).$$

Then φ is also a homeomorphism since

$$\varphi^{-1}(x_0, x_1, x_2, \cdots) = (\cdots, x_2, x_1, x_0, f(x_0), f^2(x_0), \cdots).$$

Since $\tau \circ \phi = \phi \circ \sigma$, σ is topologically conjugate to τ . Hence, by Lemma 3.5, τ is expansive if f is expansive.

THEOREM 3.6. The closed interval I = [0, 1] does not admit expansive maps.

Proof. Let $f: I \to I$ be a continuous surjection and suppose that f is expansive. Then τ is expansive. Since f is a surjection, we have the following properties : There exist $a, b \in I$ with $0 \le a \le b \le 1$ such that either

(1)
$$f(a) = 0, f(b) = 1$$
, or

(2)
$$f(a) = 1, f(b) = 0.$$

For the case (1), we have a contradiction as follows : Since f has at least two fixed points and the set of all fixed points of f is not dense in I, there are two points $u, v \in I$ with u < v such that f(u) = v, f(u) = v and $f(x) \neq x$ for u < x < v. It follows two cases

(1-1) f(x) > x for u < x < v, or

(1-2) f(x) < x for u < x < v.

We consider the cases (1-1). Note that $f|_{[u,v]}$ cannot be a bijection. Thus there are two points x^1, x^2 such that $u < x^1 < x^2 < v$ and $f(x^1) = f(x^2)$. If we take $y^0 = f(x^0) = \max\{f(x) : u < x \le x^2\}$, then $u < x^0 < x^2 < y^0$. Thus we can construct a sequence

$$x_0^0 > x_1^1 > \dots > u, \ x_0^0 = x^0,$$

such that $f(x_i^0) = x_{i-1}^0$ for $i \ge 1$ and $x_n^0 \to u$ as $n \to \infty$.

For $0 < \varepsilon < \min\{x^2 - x^0, x^0 - u\}$, there exists an N > 0 such that $u < x_N^0 < u + \frac{\varepsilon}{2}$. Also, there exists $0 < \delta < x_N^0 - u$ such that for $x, y \in I$

 $|x-y| < 2\delta$ implies $|f^n(x) - f^n(y)| < \frac{\varepsilon}{2}$

for all $0 \le n \le N$. Putting

$$c^1 = x_N^0 - \delta, \ c^2 = x_N^0 + \delta,$$

we have.

$$|f^{N}(c^{i}) - f^{N}(x^{0}_{n})| = |f^{N}(c^{i}) - x^{0}| < \frac{\varepsilon}{2}, i = 1, 2$$

since $u < c^1 < c^2 < x^2$ and $|c^i - x_N^0| = \delta < 2\delta$, Thus we obtain

$$u < x^{0} - \frac{\varepsilon}{2} < f^{N}(c^{i}) < x^{0} + \frac{\varepsilon}{2} < x^{2}$$

and

$$f(f^N(c^i)) = f^{N+1}(c^i) \le y^0, \ i = 1, 2.$$

Now, we have the following three cases :

(i) $f^{N+1}(c^1) = y^0$ and $f^{N+1}(c^2) < y^0$, or (ii) $f^{N+1}(c^1) < y^0$ and $f^{N+1}(c^2) = y^0$, or (iii) $f^{N+1}(c^1) < y^0$ and $f^{N+1}(c^2) < y^0$.

We first consider for the cases (i) and (ii). If $f^{N+1}(c^i) = y^0$ for some i = 1, 2, then we can find a sequence

$$c_0^i > c_1^i > c_2^i > \dots > u, \ c_0^i = c^i$$

such that $f(c_j^i) = c_{j-1}^i$ for $j \ge 1$. We construct a sequence $\{b_j\}$ as $b_j = f^{N-j}(c^i)$ for $0 \le j \le N$ and $b_{N+j} = c_j^i$ for j > 0. Since $|c^i - x_N^0| = \delta < 2\delta$, we have

$$|f^{n}(c^{i}) - f^{n}(x_{N}^{0})| = |b_{N-n} - x_{N-n}^{0}| < \frac{\varepsilon}{2}$$

for $0 \le n \le N$. Note that

$$u+rac{arepsilon}{2} > x_N^0 > x_{N+1}^0 > \cdots > u ext{ and } u+arepsilon > x_N^0 + \delta \ge c_0^i > c_1^i > \cdots > u.$$

Thus we obtain

$$|b_j - x_j^0| = |c_{j-N} - x_j^0| < \varepsilon$$

for $j \ge N$. This implies that $|b_j - x_j^0| < \varepsilon$ for all $j \ge 0$. Furthermore, we have

$$f^{j}(b_{0}) = f^{j}(f^{N}(c^{i})) = f^{j-1}(f^{N+1}(c^{i})) = f^{j-1}(f(x_{0}^{0})) = f^{j}(x_{0}^{0})$$

for j > 0, since $f^{N+1}(c^i) = y^0 = f(x^0)$.

When $n \ge 0$, we have

$$\tau^{n}(b_{0}, b_{1}, \cdots) = (f^{n}(b_{0}), \cdots, f(b_{0}), b_{0}, b_{1}, \cdots)$$

and

$$\tau^n(x_0^0, x_1^0, \cdots) = (f^n(x_0^0), \cdots, f(x_0), x_0^0, x_1^0, \cdots).$$

When $0 \neq j < n$, we have

$$\tau^{n}(b_{0}, b_{1}, \cdots)_{j} = f^{n-j}(b_{0}) \text{ and } \tau^{n}(x_{0}^{0}, x_{1}^{0}, \cdots)_{j} = f^{n-j}(x_{0}^{0}).$$

Thus $f^{n-j}(b_0) = f^{n-j}(x_0^0)$ since $f^j(b_0) = f^j(x_0)$. When $j \ge n$,

$$\tau^{n}(b_{0}, b_{1}, \cdots)_{j} = b_{j-n} \text{ and } \tau^{n}(x_{0}^{0}, x_{1}^{0}, \cdots)_{j} = x_{j-n}^{0}$$

implies that $|b_{j-n} - x_{j-n}^0| < \varepsilon < e$.

When n < 0, we have

$$\tau^n(b_0,b_1,\cdots)=(b_{-n},b_{1-n},\cdots)$$

and

$$\tau^{n}(x_{0}^{0}, x_{1}^{0}, \cdots) = (x_{-n}^{0}, x_{1-n}^{0}, \cdots).$$

Thus

$$\rho(\tau^n(b_0, b_1, \cdots), \tau^n(x_0^0, x_1^0, \cdots)) < \epsilon$$

for all $n \in \mathbb{Z}$. It follows that $(b_0, b_1, \cdots) = (x_0^0, x_1^0, \cdots)$ which is a contradiction since $b_N \neq x_N^0$.

Next, we consider for the case (iii). If we assume that $f^{N+1}(c^1) < y^0$ and $f^{N+1}(c^2) < y^0$, then

$$f^{N+1}(x_N^0) = f(f^N(x_N^0)) = f(x_0^0) = y^0.$$

Since there are c^3, c^4 such that

$$c^1 < c^3 < x^0_N < c^4 < c^2 \text{ and } f^{N+1}(c^3) = f^{N+1}(c^4),$$

we can find a sequence for i = 3, 4,

$$c_0^i > c_1^i \dots > u, c_0^i = c^i, f(c_j^i) = c_{j-1}^i \text{ for } j \ge 1.$$

Then we also get a contradiction by the same manner for the cases (i) and (ii).

For the case (1-2), we can prove similarly by the method for the case (1-1).

Finally, we consider the case (2). Since there exist a_1, a_2 with $a < a_1 < b_1 < b$ such that $f(a_1) = b$ and $f(b_1) = a$, we have $f^2(a_1) = 0$ and $f^2(b_1) = 1$. Since $\tau : \varprojlim(X, f^2) \to \varprojlim(X, f^2)$ is conjugate to $\tau^2 : \varprojlim(X, f) \to \varprojlim(X, f), \tau^2$ is expansive. Hence the remaining proof is the same as the proof for the case (1). Consequently, there is no expansive map on the closed interval I.

References

- N Aoki, Topological Dynamics, Topics in General Topology(K. Morita and J. Nagata, eds.), North-Holland, Amsterdam, 1989, pp. 625-740.
- [2] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland, Amsterdam, 1994.
- [3] E. Coven and W. Reddy, Positively expansive maps of compact manifolds, Lecture Notes in Math. 819, Springer-Verlag, 1980, pp. 96-110.
- [4] K. Hirade, Expansive homeomorphisms of compact surfaces are pseudo Anosov, Osaka J. Math. 27 (1990), 117-162.
- [5] K. Hirade, Positively expansive open maps of Peano spaces, Topology and its Appl. 37 (1990), 213-220.

- [6] K. Hirade, Nonexistence of positively expansive maps on compact connected manifolds with boundary, Proc. Amer. Math. Soc. 110 (1990), 565-568.
- [7] J. L. Kelly, General Topology, Van Nostrand, Princeton, N. J., 1987.
- [8] L. Lewowicz, Expansive homeomorphisms of surfaces, Bull. Brazil Math. Soc. 20 (1989), 113-133.
- [9] W. Reddy, Expanding maps on compact metric spaces, Topology and its Appl. 13 (1982), 327-334.
- [10] K. Sakai, Shadowing properties of L-hyperbolic homeomorphisms, Topology and its Appl. 112 (2001), 229-243.

SUNG KYU CHOI DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: skchoi@math.cnu.ac.kr

**

CHIN-KU CHU DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: ckchu@math.cnu.ac.kr

JONG SUH PARK DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: jspark@math.cnu.ac.kr