
JOURNAL OF THE 
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 15, No.l, June 2002

VARIATION OF ORBIT-COINCIDENCE SETS

Anjali Srivastava

ABSTRACT. David Gauld [3] proved that in many familiar cases the 
upper semi-finite topology on the set of closed subsets of a space is the 
largest topology making the coincidence function continuous, when 
the collection of functions is given the graph topology. Considering 
G-spaces and taking the coincidence set to consist of points where 
orbits coincidence, we obtain G-version of many of his results.

1. Introduction
An action of a topological group G on a topological space Y is 

a continuous map 0 from G x Y to Y satisfying 6(e,y) = y and 

아(91, 이<92, y)) = 6⑴1功2, ?/), where pi,p2 仁 G and e is the identity of 

G : a topological space together with a given action is called a G- 

space. Denote 0(g,y) by g • y. For an element y of a G-space F, the 

set {gr • j; | p 6 G} denoted by G(y) is called the orbit of y. The 

collection Y/G of orbits together with the topology coinduced by the 

map 7r : Y ―> y/G taking y to G(y) is called the orbit space of Y. The 

map 7r is called the orbit map. It is an open map and becomes a closed 

map as well when G is compact. If Y is Hausdorff and G is compact, 

then Y/G is Hausdorff. Each G E G determines a homeomorphism 

Tg : Y -今 y defined by Tg(y) — g • y^y EY. The action 이 of (7 on F 

is called proper if the map from (7 x F to K x Y defined by sending 

(g,y) to (Tg(y 丄 y), g E G^y EY is proper i.e., closed with compact 

fibres. If G acts on Y properly, then also G/Y is Hausdorff [See 5]. If

Received by the editors on April 26, 2002 .
2000 Mathematics Subject Classifications: Primary 37Cxx..
Key words and phrases: Coincidence set, Graph topology, Upper semi-finite 

topology, (구-space..

1



2 ANJALI SRIVASTAVA

X and Y are (구-spaces, then the action on the product space X x Y 

is taken to be the diagonal action.

The collection :F(X, Y) of continuous maps from a topological space 

X to a topological space Y is equipped with the graph topology : the 

family {(W) | W is an open set of X x F}, where (W) = {f 仁

y) | graph r(f) of f is contained inW} forms a basis for this 

topology [See 2]. The collection of closed sets of X is denoted by QX 

and is given the upper semi-finite topology : the family {[V] | V is an 

open set of 사, where [V] = {F E (X \ F CV} forms a basis for this 

topology [See 4].

Let /z : X —> y be a continuous map from a topological X to a 

Hausdorff space Y. Then for a continuous map f : X Y, the 

coincidence set 重九(/) consists of those points of X at which f and h 

agree. Because W(f) G QX we can define a map 다h : V) —斗 (X.

In [3], Gauld stuied the variation of with f. Also, the continuity 

of the coincidence function 따 : JQX, F) x Y) —>〈X sending 

(/, h) to their coincidence set, is considered. For G-spaces X, Y with 

Y Hausdorff, we let the orbit coincidence set Kf,h be the set of points 

of X where the orbits of f(x) and h(x) coincide, the orbit coincidence 

function K is defined in a similar way. In Section 2 of this paper, 

taking G to be compact Hausdorff we prove the continuity of If九 , the 

restriction of K to Y) x {h} identified with F). It is also 

noted that if the action of G on K is proper, then the continuity of 

Kh continues to be true for any group G. Also the continuity of the 

orbit-coincidence function K is considered. Finally, we find G-version 

of some results of Gauld [3] in Section 3.

For terms and definitions not explained here, we refer to [1,3,5].

Unless stated otherwise, X and Y will denote G-spaces with Y 

Hausdorff and G will be a compact Hausdorff group.

2. Variation of orbit-coincidence sets

2.1 DEFINITION. For f,h E K), the set Kf,h, consisting of 
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points of X where 7r o f and 7roh agree is called the orbit-coincidence 

set of f and h.

Note that Kf^ = {^EX\ = (구(九(:c))} is a closed set of

X.

The coincidence set and the orbit coincidence set of two maps may 

differ : consider the action by the usual addition of the discrete group 

of integers Z on the real line R (hereafter termed as a Z-space R) and 

the maps fn:R-^R defined by = nx where n = 1,2. Then 

Wi,/2) = {0}andK(/1,/2) = Z.

2.2 Definition. The map K : x TpGF) -今〈X defined

by K(J\ h) = Kf,h is called the orbit-coincidence function.

If h is fixed, then the restriction of the map K to JF(X, Y) X {h} = 

y) is denoted by Kh- For the trivial group G, K and Kh are 

easily seen to be the maps ① and ①九 respectively as described in [3].

We state the following lemma without proof.

2.3 LEMMA. Let h € TQX, F) and Z be a topological space. Then

the map A :X) —> F) defined by fi(f) = h。f, f e :X)

is continuous.

2.4 REMARK. Let tt : Y —> Y/G be the orbit map. Then tv : 

TQX,y) —> 八X,Y/G) is a continuous map.

2.5 Proposition. Let h e :F(X,Y). Then Kh : ；F(X,y)-今 (X 

is continuous.

Proof. The proof follows by noting that Kh = 다穴a ° tt- □

2.6 REMARK. Since the compactness of G is required for the orbit 

space Y/G to be Hausdorff, Proposition 2.5 remains true for any G 

on Y is proper.
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2.7 PROPOSITION. If X x Y is normal, then the orbit-coincidence 

function K is continuous.

Proof. Choose a basic open set \V] of (；X containing K(J\ h). De

note by i, the inclusion oi X — V into X and by lx the identity 

map on X. Since 7入 x 7r is a perfect map, X x Y/G is normal and 

hence disjoint closed sets T(7r o / o i) and T(7r o /z o i) can be sep

arated by open sets U[ and Lg. Setting Ui = U- U V x Y/G and 

Vi = (7% x 7r)—乂尿),》= 1,2, we show that (/,h) G (Vi) x (14) C 

K—X[V]. That (f,h) 6 04)〉〈〈恥) is simple. Let (fci,fc2) 6〈Vi)〉〈 {比. 

If ⑦ 6 X — V, then (:r,7r o 스(:z:)) E U-. Since U[ Pl = 0, we 

have 7「o ki(x) 斗 7「o 사세 Thus x g K(kijc2). It follows that 

互(주1,주2)c U. Therefore (…寸 G K^lV]. □

2.8 PROPOSITION. IfY is separable metric, then K is continuous.

Proof. Let V be an open set of X and (fji) E K-1[V]. Note that 

Y/G is a metric space. Define p : X x Y/G —> R by(7(⑦, GQ/)) = 

d(ir o y(:r),(7(j/)) — d(7r o /z(a:)), GQ/)), where d is the metric on Y/G 

induced by that of Y. Then p is continuous. Let U\ = p~1 (( —co, 0)) U 

V x Y/G,U2 =p—2((0,00)) U V x Y/G and let K= (Ix x 찌-히杯), 

i = 1,2. We show that (f,h) G (H)x(V分 C Let e X —V.

Since x 우 K(f, A), we have 7r o f(x) 쿠 7? o h(x). Thus p(x, 7r o /(x)) = 

d(jv°f (、賞), 冗0h(x))—d(iToh(x), 7vo f (x)) = —cZ(7roh(x)? 7「o/(：z:)) < 0 and 

P(X,7Voh(xY) — d(7rojf(x)? 7ro/z(x))-(y(7ro/z(⑦), 7ro/z(⑦)) = d(7ro/(：c), 7TO 

h(X)) > 0. If ⑦ G V, then we have (x, 7ro/(x)), (x, 7『o/z (:g)) £ V xY/G. 

It follows that (Jx x 7r)(r(f)) C and (Ix x 7「)(r(方)) C t『2. Thus 

we have (J, h) E (\l) x (V》). By similar way of proof of Proposition 

2.7, we can show that (V》) x {V}) C K~1\V]. Thus is open.

Therefore K is continuous. □

3. Upper semi-flnite topology and continuity of K(Kh)

3.1 DEFINITION. Let I be the closed unit interval [0,1] of the real 

line R with the trivial action of G. Then a homotopy H : X x I -今 Y 
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is called G-active if 우(구(Zf(：r,0)), for any t 6 (0,1],

3.2 Examples.

(a) Let f and h be constant maps from R toR defined by /(t) ==• 1 

and h(t) = 2,t E and let R be acted upon by the discrete group 

of integers with the usual addition. Then the straight line homotopy 

between f and h is active but not (구-active.

(b) Let G be the subgroup { g 여 ) : 凶 b e a > o j> of G7(2, R) 

acting on」R by g 여 ) • :z: = w 十 b, ⑦ 6 J?. Then the straight line 

homotopy between the identity map on R and any nonzero translation 

of R is an example of an active deformation which is not(구-active.

Let H : X x / y be a G-active homotopy. We call the map 

th : :F(X, I) —> TQX, K) defined by 77f(a)(jr) = where

a G I) and x E X citeSee 3. Denote by Hq, the restriction 

of H to the base X x {0}. Identify X x {0} with X and note that 

Khq o th =(丁, where a : TQX, I) —> [Xmaps a to its zero-set. Since 

for a perfectly normal space X the upper semi-finite topology is the 

largest topology on〈X making a continuous [See 3; Proposition [1.4]], 

we conclude the following:

Let X be perfectly normal and H \ X 乂 I —斗 Y be a G-active 

homotopy. Then the upper semi-finite topology is the largest topology 

on〈X making Kh0 continuous.

Call a path f in X orbit non-overlapping if f(t) 우 G(/(0)), for 

any t G (0,1], and say that X has the property W (G-strong) if there 

exists a G-active homotopy H . X 乂 I —斗 X such that Hq = lx.

The Z-space Ris W (Z-strong). Also the Euclidean space!?2 with 

the action 6 oi R defined by z)),x,y, z E R is W (/《-strong): 

the straight line homotopy between the identity map on」R2 and a 

translation of B2 by (<z, 6), b 尹 0 is an active deformation of B2
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We easily obtain G-versions of Corollaries 2.6 and 2.7 of [3] as 

follows:

Let X be perfectly normal. Then the upper semi-finite topology on 

(X is the largest topology making Kh continuous provided either of 

the following holds:

(a) Y has the property W(G-strong).

(b) h : X Y is a constant map and Y has an orbit non

overlapping path beginning from the image point of h.

Alsof if X is perfectly normal and Y contains an orbit non-overlap 

ping path, then the upper semi-finite topology on〈X is the largest 

topology making K continuous.
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