Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial

비파괴적 연속압입시험: 대형구조물로부터 nano소재까지의 응용연구

  • 전은채 (서울대학교 재료공학부) ;
  • 권동일 (서울대학교 재료공학부) ;
  • 최열 (㈜ 프론틱스 기술연구소) ;
  • 장재일 (㈜ 프론틱스 기술연구소)
  • Published : 2002.08.30

Abstract

The continuous indentation techniques are one of the most effective methods to nondestructively estimate mechanical properties. There are many applications in various dimensions of materials from macro-scale, through micro-scale, even to nano-scale range. The macro-range technology of kgf-load level is now focused on the evaluation of tensile properties and residual stress of bulk materials, for example, used in conventional load-bearing structures and in-use pipelines. The technology and the apparatus were successfully developed by a domestic research group. The micro-range technology of gf-load level can be applied to investigate some property-gradient materials such as weldment. Because it has better spatial resolution than the macro-range technology. The nano-range technology (called nanoindentation technique) of mgf-load level is basically used to evaluate hardness and modulus of micro- and nano-materials. Moreover, many researches are going on to measure tensile properties and residual stress. The nanoindentation technology is easy to be applied to the various fields, such as semiconductor devices, multiphase materials, and biomaterials, though other methods are too difficult to be applied due to dimensional or environmental limitations. On the basis of these accomplishments, the international and the domestic standards are being established.

재료에 가해지는 하중에 따른 변형정도를 측정하는 연속압입시험은 비파괴적으로 재료의 기계적 물성을 직접 평가할 수 있는 기법으로, 하충의 범위에 따라 macro, micro 그리고 nano의 세 범위로 나눌 수 있다. Macro 범위는 kgf 영역에서 사용되어, 국부 영역의 인장물성과 신뢰성 저하의 주요 원인인 잔류응력을 구할 수 있으며, 최근에는 국내기술에 의해 관련 기기와 기술이 개발되었다. 산업구조물, 사용중인 배관 등 기존 시험법으로는 평가하기 힘든 소재의 신뢰성 평가에 많은 활용이 이루어지고 있다. Micro 범위는 gf 영역으로, macro 범위보다 높은 분해능에 의해 용접부 등 물성 구배가 존재하는 재료에 사용된다. 한편 mgf 영역의 극미소하중에 적용되는 nanoindentation technique은 기본적으로 경도와 탄성계수를 구할 수 있으며, 잔류응력, 인장물성 등을 유도하는 연구가 진행중이다. 반도체 재료, 다 상 재료, 바이오 소재 등에서 많은 활용이 이루어지고 있으며, 그 수요가 급격히 증가하고 있는 추세이다. 이러한 연구 들올 바탕으로 하여 국제 표준 규격 및 국내 표준 규격의 제정이 추진 중이다.

Keywords

References

  1. J. H Ahn and D. Kwon, ‘Derivation of plastic stress-strain relationship from ball indentation: Examination of strain definition and pileup effect,’ J. Mat. Res., Vol. 16, No. 11, pp. 3170-3178, (2001) https://doi.org/10.1557/JMR.2001.0437
  2. D. Tabor, 'Hardness of metals,' pp. 2, Clarendon Press, Oxford, England, (1951)
  3. We. Oliver and G.M Pharr, ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,’ J. Mat. Res., Vol. 7, No. 6, pp. 1E64-1583, (1992)
  4. AL. Norbury and T. Sanmel, ‘The recovery and sinking-in or piling-up of material in the brinell test, and the effects of these factors on the correlation of the brinell with certain other hardness tests,’ J. Iron steel Inst., Vol. 117, pp. 673-687 (1928)
  5. Y-H Lee and D. Kwon, ‘Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to the nanoindentation technique,’ J. Mat. Res. Vol. 17, pp. 901-906, (2002) https://doi.org/10.1557/JMR.2002.0131
  6. Z. Li, Y-T. Cheng, HT. Yang and S. Chandrasekar, ‘On two indentation hardness definitions,’ Surface and Coatings Technology, Vol. 154, pp. 124-130, (2002)
  7. Y liu and AHW Ngan, ‘Depth dependence of hardness in copper single crystals measured by nanoindentation,’ Scripta Mater. Vol. 44, pp. 237-241, (2001) https://doi.org/10.1016/S1359-6462(00)00598-4
  8. Y.Y. Lim, M.M. Chaudhri and Y Enomoto, ‘Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentation,’ J. Mat. Res., Vol. 14, No.6, pp. 2134-2327, (1999)
  9. V. Marx and H Balke, ‘A critical investigation of the unloading behavior of sharp indentation,’ Acta Mater., Vol. 45, No. 9, pp. 3791-3800, (1997) https://doi.org/10.1016/S1359-6454(97)00031-1
  10. R. W. Siegel and G. E. Fougere, ‘Mechanical properties of nanophase metals,’ Nanostructured Mat., Vol. 6, pp. 205-216, (1995) https://doi.org/10.1016/0965-9773(95)00044-5
  11. Y Toivola, J. Thurn and RF. Cook, ‘Structural, electrical, and mechanical properties development during curing of low-k hydrogen silsesquioxane films,’ J. the Electrochemical Soc., Vol. 149, No.3, pp. F9-F17, (2002)
  12. Y Choi, W.Y. Chao and D. Kwon, ‘Analysis of mechanical property distribution in multiphase ultra-fine-grained steels by nanoindentation,’ Scripta Mat., Vol. 45, pp. 1401-1406, (2001)