DOI QR코드

DOI QR Code

Manganese Metallamacrocycles with Various Coordination Solvents

  • Song, Ji-Heh (Department of Chemistry, College of Science and Technology, Hanyang University) ;
  • Moon, Doh-Yun (Department of Chemistry, College of Science and Technology, Hanyang University) ;
  • Lah, Myoung-Soo (Department of Chemistry, College of Science and Technology, Hanyang University)
  • Published : 2002.05.20

Abstract

The hexanuclear metallamacrocycles were observed repeatedly in various conditions including the presence of several different tricationic metal ions in the macrocyclic ring system and of the linear alkyl chains at the acyl site of N-acylsalicylhydrazide ligand, which contrasts to the formation of the decanuclear metallamacrocycle with bulkier side chains such as phenyl group at the acyl site of the ligand. We synthesized a series of metallamacrocycles in various solvents to find the relationship between the solvents and the nuclearity of the metallamacrocycles. Whether the solvents are sterically more demanding or not, the complexes formed kept the hexanuclear metallamacrocycle system.

Keywords

References

  1. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives; VCH: New York, 1995
  2. Cram, D. J.; Cram, J. M. Container Molecules and Their Guests; The Royal Society of Chemistry: Cambridge, UK, 1994
  3. Swiegers, G. F.; Malefeste, T. J. Chem. Rev. 2000, 100, 3483-3538 https://doi.org/10.1021/cr990110s
  4. Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975-982 https://doi.org/10.1021/ar970224v
  5. Fujita, M. Chem. Soc. Rev. 1998, 6, 417-425 https://doi.org/10.1039/a827417z
  6. Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853-908 https://doi.org/10.1021/cr9601324
  7. Uller, E.; Demleitner, B.; Bernt, I.; Saalfrank, R. W. In Structure and Bonding; Fujita, M., Ed.; Springer: Berlin, 2000; Vol. 96, pp 149-175 https://doi.org/10.1007/3-540-46591-X_5
  8. Goodgame, D. M. L.; Menzer, S.; Smith, A. M.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1997, 3213-3218 https://doi.org/10.1039/a702634j
  9. Hirsch, K. A.; Wilson, S. C.; Moore, J. S. Chem. Eur. J. 1997, 3, 765-771 https://doi.org/10.1002/chem.19970030517
  10. Robson, R. J. Chem. Soc., Dalton Trans. 2000, 3735-3744 https://doi.org/10.1039/b003591m
  11. Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999, 38, 2638-2684 https://doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.0.CO;2-4
  12. Braga, D.; Grepioni, F.; Desiraju, G. R. Chem. Rev. 1998, 98, 1375-1405 https://doi.org/10.1021/cr960091b
  13. Zaworotko, M. J. Angew. Chem., Int. Ed. 2000, 39, 3052-3054 https://doi.org/10.1002/1521-3773(20000901)39:17<3052::AID-ANIE3052>3.0.CO;2-8
  14. Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474-484 https://doi.org/10.1021/ar970151f
  15. Rao, C. N. R.; Natarajan, S.; Choudhury, A.; Neeraj, S.; Ayi, A. A. Acc. Chem. Res. 2001, 34, 80-87 https://doi.org/10.1021/ar000135+
  16. Janiak, C. Angew. Chem., Int. Ed. 1997, 36, 1431-1434 https://doi.org/10.1002/anie.199714311
  17. Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460-1494 https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z
  18. Biradha, K.; Domasevitch, K. V.; Moulton, B.; Seward, C.; Zaworotko, M. J. Chem. Commun. 1999, 1327-1328 https://doi.org/10.1039/a901311c
  19. Barnett, S. A.; Blake, A. J.; Champness, N. R.; Nicolson, J. E. B.; Wilson, C. J. Chem. Soc., Dalton Trans. 2001, 567-573 https://doi.org/10.1039/b008715g
  20. Gardner, G. B.; Venkataraman, D.; Moore, J. S.; Lee, S. Nature 1995, 374, 792-795 https://doi.org/10.1038/374792a0
  21. Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem., Int. Ed. 1997, 36, 1725-1727 https://doi.org/10.1002/anie.199717251
  22. Prior, T. J.; Rosseinsky, M. J. Chem. Commun. 2001, 495-496 https://doi.org/10.1039/b009455m
  23. Biradha, K.; Fujita, M. Chem. Commun. 2001, 15-16 https://doi.org/10.1039/b007014i
  24. Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474-484 https://doi.org/10.1021/ar970151f
  25. Kim, J.; Chen, B.; Reineke, T. M.; Li, H.; Eddaoudi, M.; Moler, D. B.; OKeeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 129, 8239-8247 https://doi.org/10.1021/ja010825o
  26. Moon, M.; Kim, I.; Lah, M. S. Inorg. Chem. 2000, 39, 2710-2711 https://doi.org/10.1021/ic991079f
  27. Lee, E.; Kim, J.; Heo, J.; Whang, D.; Kim, K. Angew. Chem., Int. Ed. 2001, 40, 399-402 https://doi.org/10.1002/1521-3773(20010119)40:2<399::AID-ANIE399>3.0.CO;2-W
  28. Kwak, B.; Rhee, H.; Park, S.; Lah, M. S. Inorg. Chem. 1998, 37, 3599-3602 https://doi.org/10.1021/ic971538h
  29. Kwak, B.; Rhee, H.; Lah, M. S. Polyhedron 2000, 19, 1985-1994 https://doi.org/10.1016/S0277-5387(00)00499-X
  30. Kwak, B.; Kim, I.; Lah, M. S. Inorg.Chim. Acta 2001, 317, 12-20 https://doi.org/10.1016/S0020-1693(01)00361-9
  31. Liu, S.-X.; Lin, S.; Lin, B.-Z.; Lin, C.-C.; Huang, J.-Q. Angew. Chem., Int. Ed. 2001, 40, 1084-1087 https://doi.org/10.1002/1521-3773(20010316)40:6<1084::AID-ANIE10840>3.0.CO;2-U
  32. SMART and SAINT, Area Detector Software Package and SAX Area detector Integration Program; Bruker Analytical X-ray: Madison, WI, 1997
  33. SADABS, Area Detector Absorption Correction Program; Bruker Analytical X-ray: Madison, WI, 1997
  34. Sheldrick, G. M., SHELXTL-PLUS, Crystal Structure Analysis Package; Bruker Analytical X-ray: Madison, WI, 1997

Cited by

  1. Metalladiazamacrocycles: Metallamacrocycles as Potential Supramolecular Host System for Small Organic Guest Molecules and Supramolecular Building Blocks for Metal Organic Frameworks vol.19, pp.4-5, 2007, https://doi.org/10.1080/10610270701275083
  2. A Hexameric Cationic Copper(II) Metallacrown as a Pertechnetate and Perrhenate Scavenger vol.22, pp.5, 2016, https://doi.org/10.1002/chem.201504315
  3. ) with 3,3,3′,3′-tetraalkyl-1,1′-aroylbis(thioureas): crystal and molecular structures of a 2 : 2 metallamacrocycle and a pyridine adduct of the analogous 3 : 3 complex vol.7, pp.25, 2005, https://doi.org/10.1039/B419468C
  4. Synthesis, Characterization, and Crystal Structure of Two Manganese Metallacrowns: 30-Metallacrown-10 and 18-Metallacrown-6 with Ligands Derived from 3-Hydroxy-2-naphthalenecarbohydrazide vol.2006, pp.23, 2006, https://doi.org/10.1002/ejic.200600565
  5. A dodecanuclear metallamacrocycle having a multidentate bridging ligand in two different binding modes pp.46, 2008, https://doi.org/10.1039/b810711d
  6. Metal–organic macrocycles, metal–organic polyhedra and metal–organic frameworks pp.23, 2009, https://doi.org/10.1039/b902988e
  7. One-Dimensional Hydrogen-Bonded Infinite Chains Composed of a Nickel(II) Macrocyclic Complex and Organic Ligands vol.24, pp.8, 2002, https://doi.org/10.5012/bkcs.2003.24.8.1150
  8. Doubly-linked 1D coordination polymers derived from 2 ∶ 2 metallamacrocyclic Ni(II) complexes with bipodal acylthiourea and exo-bidentate N-donor bridging ligands: towar vol.29, pp.11, 2005, https://doi.org/10.1039/b509727d
  9. Solvent Effect on the Nature of the Metallamacrocycles Formed: Formation of Octanuclear and Dodecanuclear Manganese Metalladiazamacrocycles vol.28, pp.11, 2002, https://doi.org/10.5012/bkcs.2007.28.11.2009
  10. Use of 2-pyrimidineamidoxime to generate polynuclear homo-/heterometallic assemblies: synthesis, crystal structures and magnetic study with theoretical investigations on the exchange mechanism vol.39, pp.41, 2002, https://doi.org/10.1039/c0dt00353k
  11. Formation of Unsymmetrical Trinuclear Metallamacrocycles Based on Two Different Cone Calix[4]arene Macrocyclic Rings vol.10, pp.5, 2020, https://doi.org/10.3390/cryst10050364