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Hierarchical Fair Queueing: A Credit-based Approach for
Hierarchical Link Sharing

Andrew Do-Sung Jun, Jinwoo Choe, and Alberto Leon-Garcia

Abstract: In this paper, we propose a hierarchical packet schedul-
ing technique to closely approximate a hierarchical extension of the
generalized processor sharing model, Hierarchical Generalized
Processor Sharing (H-GPS). Our approach is to undertake the
tasks of service guarantee and hierarchical link sharing in an inde-
pendent manner so that each task best serves its own objective. The
H-GPS model is decomposed into two separate service components:
the guaranteed service component to consistently provide perfor-
mance guarantees over the entire system, and the excess service
component to fairly distribute spare bandwidth according to the
hierarchical scheduling rule. For tight and harmonized integration
of the two service components into a single packet scheduling algo-
rithm, we introduce two novel concepts of distributed virtual time
and service credit, and develop a packet version of H-GPS called
Hierarchical Fair Queueing (HFQ). We demonstrate the layer-
independent performance of the HFQ algorithm through simula-
tion results.

Index Terms: Hierarchical packet scheduling, fair queueing, GPS,
H-GPS, H-PFQ, HFQ

I. INTRODUCTION

In support of real-time applications such as packet video,
link capacities in a data communications network need to be
shared according to the Quality of Service (QoS) requirements
of communication sessions. Depending upon service models
supported, such as integrated services [1] or differentiated ser-
vices [2], link sharing ought to be performed on the per-session
or per-group basis. Should the network be shared by multi-
ple administrative domains, requiring QoS guarantees for them-
selves as well as for the groups and/or sessions within the do-
mains, then it is inevitable that link sharing structure of the net-
work should be configured into multiple layers [3], [4]. Fig. 1
depicts an example of a hierarchical scheduling structure in a
packet switch or a router, where a leaf node represents a com-
munication session while a non-leaf node represents a group of
such sessions. Node 11, for example, consists of nodes 9 and
10, and node 9, in turn, represents the group of nodes 1, 2, and
3.

In this paper, we develop the Hierarchical Fair Queueing
(HFQ) algorithm for fair hierarchical bandwidth distribution
with tight performance guarantees. HFQ is an approximation
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Fig. 1. A scheduling hierarchy example.

of the Hierarchical Generalized Processor Sharing (H-GPS)
model defined in [5]. In H-GPS, service fairness is pursued
in accordance with the hierarchical link sharing rule; that is,
whenever bandwidth is spared by an inactive session, more
“closely-related” sessions in the scheduling hierarchy will be
given higher priority in claiming the spare bandwidth. Within
the same degree of “kinship,” the spare bandwidth is fairly
shared in proportion to their service weights. If closest ses-
sions cannot consume the spare bandwidth due to insufficient
in-flows, then chances will be given to the next “closest” ses-
sions. This process continues until either the spare bandwidth is
fully consumed, or no session is backlogged in the entire system.

For an example of such H-GPS operation, consider the hier-
archical scheduling structure in Fig. 1. If session 4 in Fig. 1 is
not backlogged, the spare bandwidth has to be distributed only
to session 5 as long as session 5 stays backlogged. In case that
session 5 cannot provide enough traffic to consume all the spare
bandwidth, session 5 (and, as a result, node 10) will become
empty at some point of time, and then the combined spare band-
width of sessions 4 and 5 will become available to sessions 1,
2, and 3 via nodes 11 and 9. Henceforth, we assume that pack-
ets arrive instantaneously to the system in batches to avoid the
situation where the spare bandwidth is consumed only partially.
Under this assumption, a session or node may require either as
much bandwidth as it can claim (i.e., backlogged) or no band-
width at all (i.e., empty).

Being aware of the performance discrepancy between the
ideal GPS model and a GPS-based packet scheduling algorithm
(such as WFQ [6], [7]), we expect that simple stacking of such
single-level systems may result in error accumulation along the
scheduling layers. Indeed, as will be illustrated through an ex-
ample in the following section, “layer-dependent” performance
characteristics are revealed in Hierarchical Packet Fair Queue-
ing (H-PFQ) [5]. This error accumulation problem in H-PFQ
stems from the fact that the “original” QoS requirement infor-
mation of a session gets diluted with those of other sessions as
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Fig. 2. An example scenario of hierarchical scheduling.

(a) Service progress in the ideal HPS model

(b) Direct approximation of the HPS model

Fig. 3. Comparison of H-GPS model and its approximation.

the packet proceeds through layers of single-level servers. The
information attenuation occurs because each single-level server
in H-PFQ schedules packets based only on the “local” QoS re-
quirement information, which represents QoS requirements of
sessions in groups, but not on the individual basis.

In HFQ, we avoid the error accumulation problem by re-
taining the “original” QoS requirement information of sessions
throughout the scheduling hierarchy. In this way, all packets are
treated in a “globally-fair” manner to receive consistent perfor-
mance guarantees over the entire system. In order to maintain
the hierarchical bandwidth distribution capability in the system,
we introduce novel mechanisins to manage spare bandwidth in
an explicit manner. We exploit the concepts of distributed vir-
tual time and service credit to accomplish two potentially con-
flicting goals of hierarchical bandwidth distribution and layer-
independent delay performance in harmony.

Ii. HIERARCHICAL LINK SHARING
METHODOLOGY

Before we introduce HFQ, we illustrate its design principle
through an example in this section. By comparing the design
principle with that of H-PFQ, we demonstrate how the task of
hierarchical link sharing can be better modeled by a single-step
modeling approach than by multi-step modeling approaches like
H-PFQ.

A. Single-step Approach

Consider an ideal hierarchical link sharing system with 7
nodes given in Fig. 2. If the hierarchical link sharing rule, ex-
plained in the previous section, is captured for its entirety in a
single step, then the hierarchical system will become a H-GPS
system, and the bandwidth distribution among 4 sessions will
take place as in Fig. 3 (a). This fluid model (i.e., H-GPS) of the

hierarchical link sharing rule does not exhibit any performance
degradation as the number of hierarchical levels increase. This is
because H-GPS retains the inforination of fair bandwidth shares
of individual sessions regardless of the locations of the sessions
in the hierarchy of the link sharing structure.

If one tries to approximate the ideal H-GPS system just in
the same way as WFQ approximates the GPS model, the pack-
ets will be transmitted in the order of Fig. 3 (b) according to
their finish times. This direct approximation of H-GPS is not
likely to exhibit serious or steep performance degradation due
to the hierarchical link sharing structure. This is because the
discrepancy between H-GPS and the approximation will always
be caused only by the unavoidable restriction of a packet fair
queueing system; i.e., “atr most one packet can be transmitted
simultaneously while servers are not expected to idle whenever
the system is backlogged.” In other words, regardless of the
number of hierarchical levels, the relationship of H-GPS and a
direct approximation of H-GPS will be the same as that of GPS
and a direct approximation of GPS, such as WFQ.

However, this direct approximation is achievable only if the
information on the future packet arrival is available in advance.
This is because unlike the case of GPS, the relative order of
finish times of packets in a H-GPS system may be reversed by
packets arriving in the future. Therefore, in developing a packet
version of H-GPS, there exists another practical and fundamen-
tal restriction; i.e., “a packet must be chosen for transmission
Dased only on the history of the past packet arrival.” In fact,
the design principle of HFQ is to approximate H-GPS as closely
as the direct approximation illustrated in Fig. 3 (b) without any
information on the future packet arrival.

B. Multi-step Approach

Consider a H-PFQ system that approximates the task of hier-
archical link sharing in multiple steps. In H-PFQ, each non-leaf
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Fig. 4. Bandwidth distribution and service progress at nodes 1-3.

node (or local server) is operated based on a GPS-based Packet
Fair Queueing (PFQ) model, such as WFQ, WF2Q, SCFQ, and
SFQ (refer to [8] and references therein for various GPS-based
packet scheduling algorithms) in an independent and isolated
manner. Therefore, even non-leaf child nodes are treated by
their parent nodes as if they were FIFO (First-In, First-Out)
queues serving only a single packet stream, and only partial
scheduling information (the relative service order of packets
within the group) is transferred from one focal server to the next.
Although this loss of information (i.e., finish times) may not im-
mediately damage the service fairness at the local server, it may
cause fluctuations in packet delay by disturbing service fairness
in the global scale.

This behavior of H-PFQ can be easily understood by exam-
ining the operations of nodes 3, 2, and 1 for the scenario given
in Fig. 2. Consider the H-GPS system in Fig. 2, where non-leaf
servers will be replaced by a WFQ one by one in the order of
nodes 3, 2, and 1. Before any non-leaf node is replaced by a
WEFQ (i.e., in the original H-GPS system), the finish time of an
incoming packet can be computed at each non-leaf node with the
variation in the allocated bandwidth taken into account. One can
easily track the bandwidth at cach non-leaf node available for its
child nodes as in Fig. 4 (a)-(c). If node 3 is a GPS server, the
packets will be served (i.e., forwarded to node 2) as in Fig. 4 (d),
where the finish times of packets arriving at node 3 can be com-
puted. Now, if we replace node 3 with a WFQ), then packets will
be forwarded to node 2 in the order of their finish times through
the bandwidth available at node 3 as is illustrated in Fig. 4 (g).
Once node 3 is replaced by a WFQ, packets from node 3 will
appear to be a single stream of packets from the viewpoint of
node 2, and hence, the service progress at node 2 will be given
by Fig. 4 (e). Consequently, after node 2 is replaced by a WFQ,
packets will be forwarded from node 2 to node ! in the order of

Fig. 4 (h).! Through a similar procedure, the service progress
at node 1 can be determined as in Fig. 4 (f) and (i), before and
after node 1 is replaced by a WFQ, respectively. Since node
1 is the root node, the order of packet service at node 1 corre-
sponds to the packet service order of the entire system. In other
words, Fig. 4 (i) represents the order of packet transmission from
the H-PFQ system composed of layered WFQ servers. As ex-
pected, the order of packet transmission in the H-PFQ system is
not the same as that of the single-step approximation given in
Fig. 3 (b). The discrepancy in the packet transmission orders of
the ideal H-GPS and the H-PFQ systems is caused not just by
the inevitable restrictions of a packet fair queueing system, but
also by the multi-step approximations of the hierarchical link
sharing rule, implicitly carried out at every non-leaf node. For
instance, if node 3 is a WFQ, node 2 will receive a series of
packets from node 3 one by one as given in Fig. 4 (g), and node
2 will compute the finish times of these packets based only on
the local service weight information (i.e., service weight of 1 for
both child nodes of node 2) as illustrated in Fig. 4 (e). There-
fore, once the order of packets being forwarded from node 3
to node 2 is determined, the service weights of individual child
sessions of node 3 will be ignored at all parent nodes of node 3
including node 2. Similarly, the local service weight of node 3
at node 2 will also be disregarded once packets from sessions 4,
5, and 6 are forwarded to node 1. In other words, as a packet
from a session travels through the hierarchy, its service weight
information at lower levels of hierarchy gets lost, and the packet
will be treated identically with packets from other sessions in
the same group. The result is that H-PFQ reveals the problem
of error accumulation, which degrades delay performance along

1At node 2, two packets are tied in their finish times, and one of them can be
chosen randomly for transmission in such cases. In this specific example, the
packet from session 4 was forwarded first to the next level.
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the depth of hierarchy as indicated in [5].

In contrast, as will be illustrated in the following sections,
HFQ as a single-step approximation of the ideal hierarchical
link sharing rule bears no such problem. Consequently, HFQ
can be considered as an improved fair hierarchical link sharing
discipline over H-PFQ.

Hl. FLUID MODEL

The error accumulation problem or layer-dependent perfor-
mance of H-PFQ is fundamentally induced by the multi-step
approximation approach as illustrated in the previous section.
This implies that the same problem will arise as long as the
H-GPS meodel is viewed as a group of hierarchically “stacked”
GPS servers and individual GPS servers are approximated by a
packet version of GPS. Therefore, to take one step further for
layer-independent performance, a different interpretation of the
H-GPS model is required, in which the operation of the H-GPS
model is described as a whole, but not as a set of GPS servers.

In this section, we introduce two fluid hierarchical link shar-
ing models, which are identical to H-GPS (as defined in [5])
in function, but different in expression. We name the models
as HPS and Explicit HPS (E-HPS), where the word “explicit”
is used to emphasize that the management of guaranteed band-
width (or service) and that of spare bandwidth are defined sepa-
rately.

A. Hierarchical Processor Sharing (HPS)

A HPS server is characterized by a hierarchical scheduling
structure, such as the one in Fig. 1, where each node ¢ is char-
acterized by a positive real number ¢,, the local service weight
of the node. From now on, let us assume that {t,, t3) represents
an interval during which all sessions (i.e., leaf nodes) are ei-
ther continuously backlogged or continuously empty. Also, let
p"(k) , By(r), and A be the h'" parent node of session k, the
set of backlogged child nodes of node k at time 7, and the set of
all sessions, respectively. Then, we define the effective service
weight of node k at time T as

H),

P
ru(r) = I1 ﬁ , (1)
h=1 YEB k1, (T)

where H;, is the number of ancestor nodes of node (or session)
k through (and including) the root node in the hierarchy. Now,
the operation of the HPS model with service capacity R can be
defined in terms of W;(¢;, t2), the amount of service that session
i receives during the interval [¢;,t2) as follows:

The HPS server is a work-conserving server such that

(t—t)R =Y Wilts,1s)

icAl

@

if there is at least one continuously backlogged session during
the interval [ty ,t2) and

Wilti,ta) Wity ta)
L;(t1)  Ti(ty)

3)

holds for any continuously backlogged sessions ¢ and j.

B. Explicit Hierarchical Processor Sharing (E-HPS)

The actual operation of the E-HPS model is identical to that of
HPS or H-GPS, but in the E-HPS model, the service distribution
rule is stated in terms of guaranteed service and excess service.
Let G;(#;,t2) and E;(t;,t;) denote the amounts of guaranteed
and excess service that session ¢ receives during the interval
[t1,22) , respectively. Then, Wy(t1,t2) , the total amount of ser-
vice that session i receives will be given as the sum of G;(¢;, ¢2)
and E;(ty,t2). As before, ¢y, denotes the local service weight
of node k, and R the service (or link) capacity. Also, let A, and
By (7) be the set of child nodes of node k and the set of back-
fogged child nodes of node & at time 7, respectively. Now, we
define the (global) nominal service weight of node k as

Hy,

Bont(k
or =11 —%—(;a (4)
h=1 aEAph(k)

Then, G;(t1, %), the amount of guaranteed service that session
i receives from the E-HPS server during the interval [t1,¢2) is
given by

ri(ta —ty) if session ¢ is backlogged,
Gilty f2) = { 0 otherwise
3
(5)
where r; = R x ; is the nominal guaranteed service rate of
session 7.
The amount of excess service that session ¢ receives during
the interval [t,¢2), on the other hand, is defined as the sum of
E; (t1,%2), the amount of excess service that session 7 receives

at each ancestor node k: i.e.,

H;
Ei(ty,t2) = ZEi,ph(i)<t17t2)' (6)
h=1

At non-leaf node k, excess service is provided in such a manner

that
Ejr(ti,t2) _ E; 1 (t1,t2)
Fjx(t) Ui k(t1)

holds for any descendant session ¢ and § of node % that are con-
tinuously backlogged, where

(M

H; »
1 Gpr-1(s
Lix(r) =[] —’;Z—"—¢; ®)
R=1 A veB oy (1)

is the effective service weight of session i at node & at time 7, and
H; i, denotes the number of ancestor nodes of session ¢ through
(and including) node % in the scheduling hierarchy. At the same
time, unless all child nodes of node & are empty, the total amount
of excess service provided at node £ is constrained by

Yoo O

e€Ar— B (t1)

3" Byt te) = (t2 —t1) X

beBL(t1)
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where BX (1) is the set of backlogged descendant sessions (i.e.,
leaf nodes) of node k at time 7. Note that the right-hand side
of equation (9) accounts only for the spare bandwidth of the
empty child nodes of node k£ whose descendant nodes are all
empty. Hence, equation (9) simply expresses the “law of service
conservation” that the total amount of service credit (or excess
service) produced by idling sessions is same as the total amount
of service credit consumed by active sessions in the same group.

Although the definitions of the H-GPS model, the E-HPS
model, and the HPS model may appear to be different, they are
all equivalent in their operation (see [9] for the proof). How-
ever, it should be noted that the guaranteed service component
and the excess service component are completely split in the def-
inition of the E-HPS. As can be seen from equation (5), (given
the nominal service weight) the guaranteed service component
is not dependent to the service hierarchy nor to the state of other
sessions, and hence, every session is explicitly guaranteed to
receive its guaranteed service amount regardless of the system
state and the relative location in the hierarchy. In contrast, the
excess service component is governed by the rules (i.e., equa-
tions (6)—(9)) for the hierarchical service redistribution process.
This separate and protected control for the guaranteed and ex-
cess service components provides the theoretical basis for the
development of a hierarchically-fair packet scheduling system
with layer-independent delay bound performance.

IV. PACKETIZED MODEL

In this section, we propose a hierarchical packet schedul-
ing algorithm to approximate the E-HPS (or equivalently HPS)
model described in the previous section.

A. Design Principles

The design goal is to achieve layer-independent delay per-
formance without compromising the global fairness of service
distribution. In the following, we introduce the concepts of lo-
cal virtual time and virtual time offset, and then explain how
layer-independent service guarantee and globally fair bandwidth
distribution mechanisms can be built upon these concepts.

In a single-level fair queueing system such as WFQ, the con-
cept of system virtual time [10] is used as a measure of the
progress of system service. When a session becomes newly
backlogged, the start time of the Head-of-Line (HOL) packet
of the session is set to the system virtual time. In this way,
both newly-backlogged and continuously-backlogged sessions
are treated fairly from any instant and onward regardless of the
service histories of the sessions.

For tight management of service fairness over the entire sys-
tern, a similar mechanism is also required in a multi-level (i.e.,
hierarchical) fair queueing system. The difficulty in a hierar-
chical system, however, is that a single value cannot charac-
terize the state of the system as a whole. This is because the
rate of service progress at a local server may deviate from the
rate of service progress at others nodes as per the hierarchical
link sharing rule. In a hierarchical fair queueing system, a lo-
cal virtual time (LVT) can be defined at each local scheduling
server in the same manner as done for single-level packet fair

queueing systems, and can be used to sustain local-scale service
fairness. However, as we have seen in Section I1, local-scale
service fairness at every local server does not immediately yield
global-scale service fairness.

What we need is a systematic method to merge LVTs at all
non-leaf nodes into a distributed virtual time system that effec-
lively represents the service progress in the system in its entirety
For this purpose, we introduce the concept of virtual time offset
(VTO) representing the difference between the LVTs of a child-
parent pair, and refer to a virtual time system comprising LVTs
and VTOs at all non-leaf nodes as the distributed virtual time
system. The significance of the distributed virtual time system
is that it represents the system state consistently throughout the
entire system. Having the precise system state information in
hand, newly-backlogged session(s) can start receiving fair ser-
vice together with continuously-backlogged session(s) regard-
less of their relative locations in the hierarchy.

For computationally efficient implementation of E-HPS and
its packet version, we need to develop practical means to realize
hierarchically-fair spare bandwidth distribution. This is because
naive implementation of the E-HPS model may result in a com-
putationally expensive system. In particular, direct computation
of E;(#,.t,) based on (6), (7), and (9) would entail evaluation of
E; (1. t5) at each ancestor node k of each “recipient” session i.
Moreover, for the computation of effective service weights (i.e.,
T, x (7)), the complete state information of every single node in
the system would be required as stated in equation (8).

As opposed to this “centralized” and “active” approach to
compute excess service for every backlogged session, the dis-
tributed virtual time system allows us to take a “distributed” and
“passive” approach by managing service credit, the amount of
service unused by idling sessions at individual non-leaf nodes.
Being passive and distributed, the new approach eliminates the
need for per-node computation and system-wide state informa-
tion, which will significantly reduce the computational com-
plexity of hierarchical bandwidth distribution.

The mechanism for service credit management can be out-
lined as follows. Instead of actively distributing spare band-
width of an idling session to an appropriate set of backlogged
sessions one by one, each non-leaf node simply accumulates
service credit generated from idling child node(s). Distribution
of service credit is then performed in a passive manner by sub-
tracting the amount of service credit accumulated at each non-
leaf node from the finish times of packets arriving from its child
nodes, just before they are forwarded to its parent node. From
the fact that LVTSs render the service progress at non-leaf nodes
in a HPS or E-HPS system, one may expect that the accumulated
amount of service credit at non-leaf nodes should be related to
VTOs in the distributed virtual time system. The relationships
among LVTs, VTOs, and service credit will be discussed in the
following section together with the formal definition of the dis-
tributed virtual time system.

B. Distributed Virtual Time System

The distributed virtual time system simply represents the ag-
gregation of the LVT and the VTO defined for every non-leaf
node. Vi (7), the LVT of non-leaf node £, is the measure of ser-
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Fig. 5. Progress of the LVTs and the VTOs at nodes 1-3.

vice progress at node k, such that for any backlogged child node
b € Bg(7) of node k, the bandwidth (i.e., service rate) that will
be allocated to node b at time 7, is given by R x @, X ad;Vk ().
From this property of LVT, it follows that

> Pa

dVi(T) _ o€k N de(k)(T), (10)
dr S o dr
be By (1)
or equivalently,
2 Pa
Hi
dVi(7) _ ]j: a€A (k) (11
dr heo Ly
T BEB ()

From (10), it is clear that the LVT of non-leaf node k and that
of its parent node p(k) increase at a same rate, only if all child
nodes of node % are backlogged, and otherwise, the LVT of node
k increases faster. The difference between the LVT of node &
and that of its parent node is denoted by S(7), the VTO at node
k;ie.,

Bi(T) = Vi(T) — Vo (7). (12)

By unrolling (12), the LVT at node k can be expressed only in
terms of the VTOs and the LVT at the root node as follows:

Hy ~1

Vi(m) = Vo(r) + Y Bprwy(7)- (13)
h=0

Now, assume that the distributed virtual time system is syn-
chronized by resetting LVTs and VTOs at all non-leaf nodes to
0 at the beginning of each system busy period. Then, LVTs at all
non-leaf nodes can be tracked and remain synchronized during
a busy period in many different ways. For the precise tracking

of LVTs, one may integrate (11) starting from the beginning of
a busy period, or the VTOs (instead of LVTs) may be tracked at
every non-leaf node using the relationship

Pe

d,Bk(T) e€AL~—By(T) dV;,(,‘.)(T)
dr 2w dr
bEBg(7)
¥ .
e€Ap—By(7) ’ aVi (1)
X ) (14)
E Pa dr
nEAL

which is an immediate result of (10) and (12). An example of
such tight tracking is shown in Fig. 5 for the hierarchical link
sharing scenario given in Fig. 2. Although these brute-force ap-
proaches would suffer from high computational complexity, we
will henceforth assume that LVTs and VTOs are tracked exactly
at all non-leaf nodes. This is for the sake of lucid illustration
of finish-time computation and comparison mechanism in HFQ,
which is far more critical than the VTO update mechanism in
achieving layer-independent performance.

Now that LVT and VTO are formally defined, we illustrate
how the service credit concept (introduced in Section IV-A) fits
into the distributed virtual time system. In other words, it will be
shown in the context of the distributed virtual time system that
the total amount of service credit produced by idling child nodes
is same as the amount consumed by backlogged child nodes, all
seen at a non-leaf node k. Consider a node &, and assume that
no child node of node &k changes its state during a time period
[t1,22). Also, let ®% be the sum of nominal service weights of
backlogged child nodes of node k, and ®§ be the sum of nom-
inal service weights of empty child nodes. From the definition
of the LVT, the total amount of service that node k£ will receive
from its parent node (as long as there is at least one busy child
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Fig. 6. Credit distribution via virtual time offset.

node) is given by Rog AV, (t2, 1), where Af(t2,t1) denotes
the difference f(t2) — f(t1). Besides, the total amount of ser-
vice received by the busy child nodes Bj, during the interval
[t1,t2) is R@ZAVk(tg, t1). Since the states of child nodes re-
main unchanged during the interval, it follows from (10) that
B AV (ta,t1) = @pAVp(t2,t1).2 Therefore, one can see
that node k is work-conserving, and it will distribute the entire
amount of service it can claim, to its busy child nodes.

If all child nodes of node k were busy, then Vj would in-
crease at the same rate as V(5 over the interval [t1,t2), and
thus, the amount of service that the set By (¢;) of child nodes
would receive, will diminish to R@ZAV},(H (t2,t1). Hence, we
can conclude that

R®} AVi(t2,t1)

— R®} AVpi (t2, 1)

= R®AB(t2,t1), (15)

which corresponds to the extra amount of service that the busy
child nodes (i.e., By (1)) receive because of the inactive child
nodes Ay — By(t1). For this reason, 8 (7) may be interpreted
as the cumulated service credit (or extra service) per unit nomi-
nal weight that can be claimed by busy child nodes. The service
credit produced (or spared) by idling child nodes is the amount
of service that would be received by idling child nodes (i.e.,
Ay, — Bg(ty)) if they were busy; i.e.,

R(Vyky (t2) = Vyy (11)) Z ©p
bEAk—Bk(t1)
= ROL AV, (t2, ). (16)
Here, note from (14) that
L
ABk(t2, t1) = — AV (t2, t1). (17)

L4

From (15)-(17), one can easily see that in the context of the dis-
tributed virtual time system, the amount of service credit con-
sumed by the busy child node is exactly the same as the amount
of service credit produced by idling child nodes. This indicates

?Remember that o, = 3¢ 4, ¥i-

that the equations (i.e., (10)—(14)) describing the dynamics of
the distributed virtual time system fulfill the service conserva-
tion law stated in (2) or (9). This service conservation principle
is illustrated graphically in Fig. 6, where the light-shaded and
dark-shaded areas represent the amount of service credit pro-
duced by idling child nodes and claimed by busy child nodes,
respectively. As was shown in (17), the sizes of these areas are
always supposed to be identical.

C. HFQ Algorithm

In HFQ, the transmission order of packets is determined
through a tournament competition (representing the service dis-
tribution hierarchy) of packets, where different scoring systems
will be employed at different matches. Matches will take place
at individual non-leaf nodes, and the scores of packets partici-
pating in a match will be calibrated with respect to the LVT at
the corresponding non-leaf node, which represents the scoring
system for the match. More precisely, to determine a winner
packet at a non-leaf node (i.e., a packet that will be forwarded
to the next hierarchical level), scores of HOL packets of back-
logged child nodes will be compared, and the packet with the
highest score (i.e., the smallest finish time) will become the win-
ner packet. The winner packet will then be forwarded to the
next level of the hierarchy, and a winner packet at the parent
node will be determined in the same manner but under a differ-
ent scoring system. This tournament competition will continue
until a winner packet is determined at the root node, which will
also become the packet chosen for transmission. The detailed
time-stamp calculation and conversion algorithm used in HFQ
can be formally presented as follows.

For any session i and its ascent node k, let C7" and £} de-

note the rn'" packet of session i and its finish time at node k,
respectively. If we further define a}* and L® as the arrival time
and the length of C[" , respectively, the finish time of the packet
at the immediate parent node p(%) is calculated as

L

Sm
wiR’

(18)

i p(1

where ST = max{F l;, Vp(i)(a]*)} is the start time of the
packet. Here, recall that V),(;, reflects the service progress at
the immediate parent node p(z) Therefore, from the definition
of FIlLiiys Fini — Vp(s)(7) can be interpreted as the amount
of virtual time left until the packet C™ departs from the ideal
E-HPS (or equivalently, HPS or H-GPS) server, which is esti-
mated at real time 7 under the assumption that all sessions will
receive services proportional to their nominal service weight ¢;
after time 7. Henceforth, we will refer to the difference be-
tween the finish time of a packet and the LVT at the immediate
parent node as the Nominal Residual Sojourn Time (NRST) of
the packet. Based on the interpretation of NRST, the ideal fluid
models can be approximated in one step. In other words, one
may derive a packet version of H-GPS in the same way as WFQ
is derived from the GPS model, by sorting all packets in the en-
tire system in the order of their NRSTs and choosing a packet
with the smallest NRST for transmission. In fact, the resulting

packet version H-GPS is equivalent to HFQ.
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The physical meaning of transmitting packets in the order
of their NRSTs can be explained as follows. As discussed in
Section II-A, the order of the actual finish times of backlogged
packets is dependent to the future packet arrival in a H-GPS sys-
tem. This means that in order to sort packets according to their
anticipated finish times, a certain assumption must be made on
the future packet arrival. In the case of the HFQ, the NRSTs
of packets are used to compare their anticipated departure time,
and this implies that all sessions are assumed to receive services
proportional to their nominal service weights after the time 7, at
which the NRSTs are computed. Since such service distribution
will take place if all sessions will be backlogged after time 7,
in a sense, the worst-case scenario is assumed for the estima-
tion of the anticipated departure time of all backlogged pack-
ets in a HFQ system. Therefore, remembering the fundamental
and practical limitations in approximating the ideal fluid models
by packet-based schedulers, one can see that transmitting pack-
ets in the order of their NRST will be one of the most sensible
and fairest approaches, and is not expected to result in serious
performance degradation due to hierarchical service structure as
discussed in Section II-A.

While sorting (and transmitting) backlogged packets in the
order of their NRSTs is the main idea in HFQ, maintaining a
single queue of all packets sorted according to their NRSTs is
not a simple task. In the case of a GPS system, once packets
are sorted according to their NRSTs (or finish times), the rela-
tive order of packets in the queue will remain unchanged. On
the other hand, in the case of a H-GPS system, depending on
the session states, the relative order of existing packets’ NRSTs
may be reversed because, in the hierarchical processor sharing
model, service rates at non-leaf nodes may not always be pro-
portional to their nominal service weights.

A way to get around this problem is to compare the NRSTs
of backlogged packets in the form of a tournament only when a
packet must be chosen for transmission. Now, let node k be a
non-leaf node, and consider two packets, C/" and C’j’-L from its
child sessions 7 and j, whose NRSTs need to be compared to
decide the packet that will be forward to the next level. In other
words, assuming that 7 denotes the time when the comparison
is made, if F") ;) = Vyi) (T) > F}' TGy~ Veu) () 5 then CF will
be forwarded to node p(k) for the next match, and C]" will be
forwarded otherwise. On the other hand, it follows from (12)
that

Hi‘k"'l

(1) = Y Bpp(r)  and
h=1
H]',k—l

b (T) =

Vi(r) + Z Bor () (),
h=1

where H,;; denotes the number of ancestor nodes of session
i through (and including) node % in the scheduling hierarchy.
From these equations, note that the NRSTs of Ci™ and C7' can
be rewritten in terms of Vi (7) as

H, k=1

Fm Z /Bph (3) T) Vk( ) and

Table 1. HFQ algorithm apptlied to Fig. 2 (bold-faced finish times

represents the winner of each competition).

FT. FT. ET.
Packets at at at Transmitted
Time
compared | Node | Node | Node packet
3 2 1
None -
Cl 0+6 6-0 ]
=0 -3 C,
Ce 0+3 3-0 7
C7 0+2
C‘} 2+3 5-1
_ Cs 6 1
=1 ct 3 3-0 6
None -
C; 5 5-1 4-0
- C: 6 1
1=1.75 e - Cy
None -
None -
C? 6 6-1 5-0 1
=D 5
t=2.125 Noue . Cy
None -
[ 5+9
=2.875 Cz 6+2 8-1 7-3/4 Cg
None -
None -
Cj 14
[oF 8+4 12-1 9
t=3.12. 3 !
3125 C¢ 5+43 8-1 s
None -
qu 14
=3.875 (o 12 12-1 11-1 Cg’
None -
None -
Cc2? 14 141 | 13-1
None - 2
1=4.375
None - s
None -
None -
_ None - 2
=55 None E 7
C7 8
Hj .-
,p(J Z pr J) — Vi(7),
respectively. Therefore, we can only compare
H; -1
> Bu@(r)  and
h=1
Z B ph () (T) )
h=1

to decide which packet to forward to p(k). This implies that
Vi (1), the LVT at node k is not really required for the com-
parison, if the finish time of a packet C|™ at node k is defined

as
Hl ke 1

Z ﬂp"(l)

One may think of F}"} as the score of the packet C/™ adjusted
for the match at node k, which has its own scoring system rep-
resented by Vi (7). Further, the finish time of a packet from a
session ¢ at its ancestor nodes can be computed recursively as
FFm = Fzr;;h*l(i) ~,8ph71(i)(7'), (19)

i,ph (4)

m
Fj,k - lp(L
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The winner packet from
node 2 finds no opponent
at the root node because
session 7 is empty. and
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transmission

Before the winner packet
is forwarded 1o the root
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52

Packets at the HOL of the sessions

Fig. 7. Packet selection procedure at time t = 3.125 in the HFQ system
given in Fig. 2.

Table 2. Simulation configuration.

Inactive Avg Packet | Noming] | Cvaranteed
Session Rate Size Rate
Period (Mbpb) (B}'ICS) Welght (MbpS)
1 0.5 1000 0.0625 0.5
2 0.5-25 2.0 900 0.0625 0.5
3 2.0 200 0.2500 2.0
4 1.0-3.0 2.0 700 0.0625 0.5
5 1.5-35 2.0 950 0.0625 0.5
6 2.0 200 0.2500 2.0
7 2.0-4.0 4.0 1000 0.1250 1.0
8 3.0 750 0.1250 1.0

and this computation will be necessary only if the packet is the
winner of the match at node p"~*(i).

(18) is similar to the equation for computing finish times of
packets in WFQ except that the nominal service weight ; is
used instead of the local service weight ¢,. This change is nec-
essary to reflect the hierarchical nature of HFQ and thereby to
maintain service fairness in the global scale. On the other hand,
(19) states how the VTOs can be used to adjust the finish time
along the hierarchy. Since VTOs are derived from spare band-
width of idling sessions as illustrated in (14) or (17), the finish
rime adjustment can be thought of as a means to distribute spare
bandwidth at a non-leaf node to its busy child nodes. For in-
stance, if all child nodes of node & are backlogged over a time
interval, then 35 (7) will remain unchanged through out the in-
terval, and no extra service will be provided to the child nodes.
Also, when there is no spare bandwidth in the system (i.e., all
sessions are backlogged), the VTO of every intermediate node
will remain unchanged, and the HFQ system degenerates to a
simple WFQ system. This is an expected result because a H-
GPS, HPS, or E-HPS server degenerates to a single-level GPS
server when all sessions are backlogged, and HFQ approximates
these ideal fluid models in the same way as WFQ approximates
the single-level GPS model. On the contrary, a H-PFQ server
does not generally degenerate to a simple single-level packet

fair queueing algorithm when all sessions are backlogged.

For an illustration of the HFQ algorithm, it is applied to the
hierarchical packet scheduling scenario in Fig. 2. and the de-
tailed procedure to determine the order of packet transmission
is described in Table 1. Note that a tournament competition
among the HOL packets of active sessions is initiated when a
packet needs to be chosen for transmission; i.c., when a new
busy period starts or when a packet transmission completes. The
packet selection procedure taking place at time ¢ — 3.125is also
schematically illustrated in Fig. 7.

V. SIMULATION RESULTS

In this section, we present simulation results for delay bound
and hierarchical link sharing characteristics of the HFQ algo-
rithm. The simulation is undertaken in NS [11]. For perfor-
mance comparisons, the H-WFQ and H-WF2Q aigorithms [5]
are also simulated under identical conditions.

Table 2 describes the simulation configuration parameters
of sessions 1 through 8 for the scheduling hierarchy shown
in Fig. 1. Every session is associated with a CBR {Constant
Bit Rate) traffic source with “randomizing dither” on the inter-
packet departure intervals (refer to the NS manuals [ 11] for de-
tails). Packet sizes are kept constant. The traffic sources of ses-
sions 1, 3, and 6 are leaky-bucket constrained in order to regu-
late their average input rates same as their guaranteed rates, and
maximum allowable burst sizes are twice as long as their packet
sizes. Other traffic sources generate significantly more traffic
than their guaranteed rates to take advantage of spare capacity
in the system. The simulation is carried out for 5 seconds, dur-
ing which sessions 2, 4, 5, and 7 have inactive periods as shown
in Table 2. The link rate is set to 7.0 Mbps, the sum of the guar-
anteed rates of sessions.

A. Hierarchical Link Sharing

Fig. 8 illustrates link sharing characteristics of H-WFQ, H-
WF2Q and HFQ, where each bandwidth-time graph depicts
throughput responses for sessions 1 through 8 all together. As
can be seen in the figure, HFQ distributes bandwidth in the same
manner that H-WFQ and H-WF2Q do. When session 2 stops
sending traffic at time 0.5, priority to utilize the unused band-
width of session 2 is first given to its sibling sessions 1 and 3.
However, since both sessions 1 and 3 are not capable of absorb-
ing the whole unused bandwidth, generating only as much traffic
as their guaranteed rates, the unused bandwidth is spilled over
to sessions 4 and 5. When session 4 stops at time 1.0, session
5 becomes the sole beneficiary of the unused bandwidth of both
sessions 3 and 4. At time 1.5 session 5 goes to sleep, and the
unused bandwidth of sessions 3, 4, and 5 are shared between
sessions 7 and 8. Then, session 8 takes all the spare bandwidth
after session 7 becomes inactive at time 2.0.

When session 2 wakes up at time 2.5, the unused bandwidth
of sessions 4 and 5 becomes available exclusively to session 2.
Then, at time 3.0 when session 4 wakes up, session 2 surrenders
the entire spare bandwidth of session 5 and some of its share for
the spare bandwidth of session 7 to session 3. Note that after ses-
sion 5 restarts sending traffic at time 3.5, the unused bandwidth
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Fig. 10. Delay response of session 3 for H-WFQ, H-WF2Q, and HFQ.

of session 7 is shared among sessions 2, 4, 5, and 8 in proportion
to their effective service weights. Finally, when session 7 wakes
up at time 4.0, every session gets as much throughput as one’s
guaranteed rate.

B. Maximum Delay Bound

Layer-independent delay characteristics of HFQ are illus-
trated in Fig. 9, where delay responses of packets for sessions
3 and 6 are depicted together in a delay-time graph. The traffic
sources of sessions 3 and 6 are conditioned exactly the same.
Since both sessions are leaky-bucket constrained with the same
parameters, their maximum delay bounds are expected to be the
same regardless of their relative locations in the scheduling hier-
archy. Indeed, as can be seen from the figure, the delay response
of session 3, which is three generations away from the root node,
is no worse than that of session 6, which is a direct child of the
root node. In fact, the delay response of node 3 is slightly better
than that of node 6 for many occasions. This is because of the

“hierarchical statistical multiplexing” effect that the idling peri-
ods of sessions 2, 4, and 5 help enhancing the delay response of
node 3. Session 6 benefits less from them due to the hierarchical
link sharing policy of HFQ. Nevertheless, the maximum delay
statistics for both nodes 3 and 6 are of comparable level. In order
to demonstrate the improved layer-independent delay character-
istics of HFQ), delay responses of node 3 for H-WFQ, H-WF2Q,
and HFQ under the same simulation settings, are compared side
by side in Fig. 10. Note that delay responses of session 3 for
H-WFQ and H-WF2Q are clearly worse than the one for HFQ.
Although the delay performance of H-WF2Q is slightly better
than that of H-WFQ, their delay characteristics reveal serious
inter-session dependence, which is not the case with HFQ.

V1. RELATED WORK AND IMPLEMENTATION
ISSUES

Most closely related work to HFQ is H-PFQ [5]. As have
been presented so far, the very motivation for the development
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of HFQ was to improve the layer-dependent delay characteris-
tics of H-PFQ while retaining the hierarchical link sharing ca-
pability.

H-FSC [12] is another hierarchical packet scheduling algo-
rithm that is capable of providing layer-independent delay per-
formance. The approaches used in H-FSC, however, are very
different from those used in HFQ. While HFQ is based only on
a single discipline, H-FSC employs two independent schedul-
ing disciplines to complement each other’s shortcomings. Un-
der normal circumstances, the rate-based discipline performs
scheduling operation to achieve hierarchical link sharing. In
case of a risk for violation of performance guarantees, the real-
time discipline takes over the operation. In contrast, HFQ is a
“pure-bred” rate-based scheduling algorithm. Besides the layer-
independent delay performance capability, H-FSC is capable of
decoupling delay and bandwidth allocation. Our approach is to
separate the two issues for independent handling. The issue of
decoupled delay and bandwidth allocation for non-hierarchical
packet scheduling is addressed in CPS [13]. The integration of
HFQ and CPS is currently under progress.

Another well-known hierarchical packet scheduling algo-
rithm is CBQ [4]. While CBQ can specify flexible hierarchi-
cal link sharing policies, its capability to support delay perfor-
mance is limited. Like H-FSC, CBQ consists of two separate
scheduling mechanisms: The link-sharing scheduler for hier-
archical bandwidth distribution and the general scheduler for
priority-based packet scheduling. Unlike H-FSC, however, the
link-sharing scheduler is not a real scheduler that makes a direct
decision for packet selection. Rather, it provides a feedback to
the general scheduler to condition the eligibility of packets. Due
to the complexity of the link sharing rules and the nature of the
priority-based scheduler, it is hard to formulate the performance
characteristics of CBQ.

Although HFQ is expected to provide improved delay perfor-
mance, its straightforward implementation (as illustrated in Sec-
tion 1V) is likely to entail increased computational complexity.
This is mainly because each non-leaf node requires the global
system state information to track its LVT. For instance, as one
can see from (11), the increase rate of the LVT at a non-leaf
node k will be influenced by the states of all nodes (or ses-
sions) either directly or indirectly. Consequently, difficulties
in exactly tracking virtual times, such as the classical iterated
deletion problem [8], will become more critical for the imple-
mentation of HFQ than for the implementation of H-PFQ where
the virtual times can be computed only based on the local state
information (i.e., the states of child nodes). However, on the
bright side, it is the hierarchical and recursive finish-time com-
putation/comparison mechanism built upon the notion of the dis-
tributed virtual time system but not the distributed virtual time
system itself that enables HFQ to achieve the layer-independent
delay performance. In other words, the accuracy of LVTs may
not be as critical factor of the layer-independent delay perfor-
mance as one may expect, and can be compromised to reduce
the computational complexity and the implementation cost of
HFQ. In fact, we arc devoting considerable portion of our re-
search effort to the devclopment of computationally efficient
HFQ algorithms, and obtained a HFQ algorithm, the compu-
tational complexity c¢f which is comparable to that of H-PFQ
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while exhibiting delay performance indistinguishable from that
of the genuine HFQ.? Further, it turned out that there exist nu-
merous ways to alleviate the computational burden for tracking
LVTs in a HFQ system. In particular, most of the techniques,
such as SCFQ and SFQ, that reduce the computation for tracking
the virtual time in a single-level PFQ system, can be extended
to the HFQ system. Therefore, we are continually investigating
all possible approaches to extend single-level PFQ algorithms
to multi-level PFQ algorithms based on HFQ, and it is still too
early to make any conclusive remark on the complexity of HFQ.

VII. CONCLUSION

In this paper, we have introduced HFQ, a new fair hierar-
chical packet scheduling algorithm, which can achieve tighter
maximum delay bounds than H-PFQ. HFQ closely approxi-
mates H-GPS, delivering consistent worst-case delay perfor-
mance regardless of relative locations in the scheduling hier-
archy. “Global-scale” comparison of time-stamps, and “local-
scale” maintenance of “service credits” are two distinct fea-
tures of HFQ, which allow “globally-fair” performance and
“hierarchically-fair” link sharing.

As data network services develop into complex structures, the
role of hierarchical packet scheduling becomes more and more
essential. For various technological, administrative and manage-
ment purposes, network traffic needs to be organized into layers
of scheduling groups for differentiated treatments. Should real-
time applications such as video be supported, layer-independent
performance characteristics of a hierarchical packet scheduling
algorithm becomes extremely important for scalable provision-
ing of hierarchical network services. That is, no matter which
traffic management group(s) a real-time application belongs to,
QoS requirements should be met in absolute terms. In such an
environment, HFQ can make a major contribution for opening
up a new way to implement hierarchical packet scheduling in
network switches and routers.
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