Effects of naval pulp wastes on the growth and feeding rates of a heterotrophic protist and copepods

  • Jeong, Hae-Jin (Department of Oceanography, College of Ocean Science and Technology, Kunsan National University)
  • 발행 : 2002.06.01

초록

I investigated whether US naval pulp wastes (pulverized paper products), which is planned to be dumped into offshore waters, may affect the ecology of major components of marine zooplankton. The presence of slurry (0.6% concentration - wet weight ; wet weight) did not significantly affect the population growth rates of the heterotrophic dinoflagellate Polykrikos kofoidii fed on Lingulodinium polyedrum, but significantly reduced the ingestion rates of the calanoid copepods Acartia spp. on L. polyedrum and those of the copepod Calanus pacificus on Akashiwo sanguinea (previously Gymnodinium sanguineum). However, C. pacificus, originally exposed to 0.6% slurry for 24 hour, can recover its feeding rates when slurry disappears. Therefore, if slurry is diluted quickly due to trubulence after being dumped at 0.6% concentration, its presence may not affect Calanus. Chemicals leached from slurry did not affect the feeding rate of Calanus. Therefore, mechanical interference by slurry on the feeding and/or swimming of copepods may be mainly responsible for the reduction of the ingestion rates.

키워드

참고문헌

  1. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water-columnmicrobes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263 https://doi.org/10.3354/meps010257
  2. Barnett, A.M. and A.E. Jahn, 1987. Pattern and persistence of anearshore planktonic ecosystem off Southern Califomia.Cont. Shelf Res., 7: 1-25 https://doi.org/10.1016/0278-4343(87)90060-4
  3. Choi, K..H and C. Park, 1993. Seasonal fluctuation of zooplanktoncommunity in Asan Bay, Korea. Bull. Korean Fish. Soc., 26:424-437
  4. Durbin, A.G. and E.G. Durbin, 1981. Standing stock and esti-mated production rates of phytoplankton and zooplankton inNarragansett Bay, Rhode Island. Estuaries., 4: 24-41 https://doi.org/10.2307/1351540
  5. Femandez, F,, 1979. Nutntional studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida). Mar. Biol., 53: 131-147 https://doi.org/10.1007/BF00389185
  6. Frost, B.W., 1972. Effects of size and concentration of food parti-cles on the feeding behavior of the marine planktonic cope-pod Catanus pacificus. Limnol. Oceanogr., 17: 805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  7. Grey, J., J. Laybourn-Parry, R.J.G. Leakey and A. McMinn, 1997.Temporal patterns of protozooplankton abundance and theirfood in Ellis Fjord, Princess Elizabeth Land, eastern Antarc-tica. Estuar. Coast. Shelf Sci., 45: 17-25 https://doi.org/10.1006/ecss.1996.0166
  8. Guillard, R.R.L. and J.H. Ryther, 1962. Studies of marine plank-tonic diatoms. I. Cyclotella nana Hustedt and Detonula con-fervacea (Cleve) Grun. Can. J. Microbiol https://doi.org/10.1139/m62-029
  9. Jeong, H.J., 1994. Predation effects by the calanoid copepodAcartia tonsa on the heterotrophic dinoflagellate Protoperi-dinium cf. divergens in the presence of co-occurring red-tidedinoflagellate prey. Mar. Ecol. Prog. Ser., 111: 87-97 https://doi.org/10.3354/meps111087
  10. Jeong, H.J, 1999. The ecological roles of heterotrophic dinoflagel-lates in marine planktonic community. J. Euk. Microbiol., 46:390-396 https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  11. Jeong, H.J. and M.I. Latz, 1994. Growth and grazing rates oftheheterotrophic dinoflagellates Protoperidinium spp. on red tidedinoflagellates. Mar. Ecol. Prog. Ser., 106: 173-185 https://doi.org/10.3354/meps106173
  12. Jeong, H.J., J.H. Shim, J.S. Kim, J.Y. Park, C.W. Lee and Y. Lee,1999a. The feeding by the thecate mixotrophic dinoflagellateFraeitidium cf. mexicanum on red tide and toxic dinoflagel-late. Mar. Ecol. Proe. Ser., 176: 263-277 https://doi.org/10.3354/meps176263
  13. Jeong, H.J., J.H. Shim, C.W. Lee, J.S. Kim and S.M. Koh, 1999b.Growth and grazing rates of the marine planktonic ciliateStrombidinopsis sp. on red-tide and toxic dinoflagellate. J.Euk. Microbiol., 46: 69-76 https://doi.org/10.1111/j.1550-7408.1999.tb04586.x
  14. Jeong, H.J., S.K. Kim, J.S. Kim, S.T, Kim, Y.D. You and J.Y.Yoon, 2001a. Growth and grazing rates of the heterotrophicdinoHagellate Polyhikos kofoidii on red-dde and toxic dinoflagel-lates.J. Euk. Microbiol., 48: 298-308 https://doi.org/10.1111/j.1550-7408.2001.tb00318.x
  15. Jeong, H.J,, H.J. Kang, J.H. Shim, J.K. Park, J.S. Kim, J.Y. Songand H.J. Choi, 2001b. The interactions among a toxicdinoflagellate Amphidiniwn carterae, the heterotrophic dinoflagellateOxyrrhis marina, and the calanoid copepods Acartia spp.Mar. Ecol. Prog. Ser., 218: 77-86 https://doi.org/10.3354/meps218077
  16. Jeong, H.J., J.Y. Yoon, J.S. Kim, Y.D. Yoo and K.A. Soung, 2002,Growth and grazing rates of the prostomatid ciliate Ttarina fusus onred-tide and toxic algae. Aquat. Microb. Ecol. (hi press)
  17. Kiorboc, T. and T.G. Nielsen, 1994. Regulation of zooplanktonbiomass and production in a temperate, coastal ecosystem. 1.Copepods. Limnol. Oceanoer., 39, 493-507 https://doi.org/10.4319/lo.1994.39.3.0493
  18. Koslow, J.A., 1981. Feeding selectivity of schools of northernAnchovy, Engraulis mordax, in the southern California Bight.Fish. Bull., 79: 131-142
  19. Laws, E.A., 1981. Physical factors affecting production. In Aquatic Pollu-tion. (E. A. Laws, ed.), PP. 33-48. John Wiley and Sons, New York
  20. Lessard, E.J., 1984. Oceanic heterotrophic dinoflagellates: distri-bution, abundance and role as microzooplankton. Ph.D. the-sis. University of Rhode Island
  21. Lessard, E. J. and M.C. Murrell, 1996. Disthbution, abundanceand size composition of heterotrophic dinoflagellates and cili-ates in the Sargasso Sea near Bermuda. Deep Sea Res., 43:1045-1065 https://doi.org/10.1016/0967-0637(96)00052-0
  22. Miller, C.A., D.L. Penry and P.M. Glibert, 1995. The impact oftrophical interactions on rates of nitrogen regeneration andgrazing in Chesapeake Bay. Limnol. Oceanogr., 40: 1005-1011 https://doi.org/10.4319/lo.1995.40.5.1005
  23. Mullin, M.M. and A. Conversi, 1988. Biomass of euphausiids andsmaller zooplankton in the California current - Geographic andinterannual comparisons relative to the Pacific Whiting, Mer-luccius productus, fishery. Fish. Bull., 87: 633-644
  24. Paasche, E. and S. K.ristiansen, 1982. Ammonium regeneration bymicrozooplankton in the Oslofjord. Mar. Biol., 69: 55-63 https://doi.org/10.1007/BF00396961
  25. Paffenhofer, G-A. and D.E. Steams, 1988. Why is Acartia tonsa(Copepoda: Calanoida) restricted to nearshore environments? Mar. Ecol. Prog. Ser., 42: 33-38 https://doi.org/10.3354/meps042033
  26. Plourde S., J.J Dodson, J.A. Runge and J.C. Therriault, 2002. Spa-tial and temporal variations in copepod community structurein the lower St. Lawrence Estuary, Canada. Mar. Ecol. Prog.Ser.,230: 211-224 https://doi.org/10.3354/meps230211
  27. Sherr, E.B. and B.F. Sherr, 1994. Bacterivory and herbivory: Keyroles of phagotrophic protists in pelagic food webs. Microb.Ecol,28:223-235 https://doi.org/10.1007/BF00166812
  28. Stoecker, D.K. and J.J. Govoni, 1984. Food selection by younglarval gulf menhaden (Brevoortia patronus). Mar. Biol., 80:299-306 https://doi.org/10.1007/BF00392825
  29. Stoecker D.K.., M.W. Parrow, J.M. Burkholder and H.B. Glasgow,2002. Grazing by microzooplankton on Pfiesteria piscicidacultures with different histohes of toxicity. Aquat. Microb. Ecol.,28:79-85 https://doi.org/10.3354/ame028079
  30. Strom, S. L. and M.W. Strom, 1996. Microzooplankton growth,grazing, and community structure in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser., 130: 229-240 https://doi.org/10.3354/meps130229
  31. Teegarden G.J., R.G. Campbell and E.G. Durbin, 2001. Zooplank-ton feeding behavior and particle selection in natural planktonassemblages containing toxic Alexandrwm spp. Mar. Ecol.Prog.Ser., 218: 213-226 https://doi.org/10.3354/meps218213
  32. Zar, J.H., 1984. Biostatistical analysis. Prentice Hall, EnglewoodCliffs