Development of a Fetal Heart Rate Detection Algorithm using Phonogram

포노그램을 이용한 태아 심박률 검출 알고리즘의 개발

  • 김동준 (청주대학교 이공대 정보통신공학부) ;
  • 강동기 (청주대학교 이공대 전자공학과)
  • Published : 2002.04.01

Abstract

This study describes a fetal heart rate(FHR) estimation algorithm using phonogram. Using a phonogram amplifier, various fetal heart sounds are collected in a university hospital. The FHR estimation algorithms consists of a lowpass filter, decimation, envelop detection, pitch detection, and post-processing. The post-processing is the FHR decision procedure using all informations of fetal heart rates. Using the algorithm and other parameters of fetal heart sound, a fetal monitoring software was developed. This can display the original signals, the FFT spectra, FHR and its trajectory. Even though the fetal phonogram amplifier detects the fetal heart sounds well, the sound quality is not so good as the ultrasonography. In case of very week fetal heart sound, autocorrelation of it showed clear periodicity. But two main peaks in one period is an obstacle in pitch detection and peaks are not so vivid. The proposed FHR estimation algorithm showed very accurate and stable results. Since the developed software displays multiple parameters in real time and has convenient functions, it will be useful for the phonogram-style fetal monitoring device.

Keywords

References

  1. A. J. Zuckerwar, R. A. Pretlow, and J. W. Stoughton, 'Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor', IEEE Trans. on Biomedical Engineering, vol. 40, no. 9, pp. 963-969, Sept. 1993 https://doi.org/10.1109/10.245618
  2. H. G. Gooverts, O. Rompelman, 'A transducer for detection of fetal breathing movements', IEEE Trans. on Biomedical Engineering, vol. 36, no. 4, pp. 471-478, April. 1989 https://doi.org/10.1109/10.18754
  3. M. N. Ansourian, J. H. Dripps, G. J. Beattie, and K. Boddy, 'Autoregressive spectral estimation of fetal breathing movement', IEEE Trans., vol. 36, no. 11, pp. 1076-1084, 1989 https://doi.org/10.1109/10.40814
  4. A. J. Cousin, I. Rapaport, K. Campbell, and J. E. Patrick, 'A tracking system for pulsed ultrasound images: application to quantification for fetal breathing movements', IEEE Trans., vol. BME-30, pp. 577-584, 1983 https://doi.org/10.1109/TBME.1983.325054
  5. K. Maeda, 'Studies on new ultrasonic doppler fetal actograph and continuous recording for fetal movement', Acts Obst. Gynaec. Jpn, 36, pp. 280-288, 1984
  6. N. Shinozuka, Y. Yamakoshi, 'Measurement of fetal movements using multichannel ultrasound pulsed doppler : autorecognition of fetal movements by maximum entropy method', Med & Biol. Eng. & Comput., 32, pp. S59-S66, 1993 https://doi.org/10.1007/BF02446651
  7. S. Lukkarinen, P. Korhonen, and A. Angerla, 'Multimedia personal computer based phonocardiography', IEEE Engineering in Medicine and Biology Society, 1996 https://doi.org/10.1109/IEMBS.1996.646545
  8. D. G. Talbert, C. J. Dewhurst, and D. P. Southall, 'New transducer for detecting fetal heart sounds: Use of compliance matching for maximum sound transfer', Lancet, vol. 1, pp. 426-427, 1984 https://doi.org/10.1016/S0140-6736(84)91755-0
  9. R. M. Rangayyan, 'Phonocardiogram signal analysis: a review', CRC Critical Reviews in Biomedical Engineering, vol. 15, issue 3, pp. 211-236, 1988
  10. R. J. Lehner, R. M. Rangayyan, 'A three-channel microcomputer system for segmentation and characterization of the phonocardigram', IEEE Trans. on Biomedical Engineering, vol. 34, no. 6, pp. 485-489, JUNE. 1987 https://doi.org/10.1109/TBME.1987.326060
  11. J. J. Dubnowski, R. W. Schafer, 'Real-time digital hardware pitch detector', IEEE Trans. on ASSP, vol. 24, no. 1, pp. 2-8, 1976 https://doi.org/10.1109/TASSP.1976.1162765
  12. 이정호, 권중혁, 강동주, 이대희, 이동규, 유시영, 이두수, '실시간 태아 심음 주기 추출을 위한 변형된 고해상도 상관 함수 방법에 관한 연구', 1998년도 대한의용생체공학회 춘계학술대회 논문집, vol. 20, no. 1, pp. 141-142, 1998
  13. A. M. Kondoz : Digital Speech, John Wiley & Sons Ltd, 1994
  14. D. O'Schaughnessy : Speech Communication - Human and Machine, IEEE Press, 2000