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Improved Acoustic Modeling Based on Selective
Data—-driven PMC*
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ABSTRACT

This paper proposes an effective method to remedy the acoustic modeling problem
inherent in the usual log-normal Parallel Model Composition intended for achieving
robust speéech recognition. In particular, the Gaussian kemels under the prescribed
log-normal PMC cannot sufficiently express the corrupted speech distributions. The
proposed scheme corrects this deficiency by judiciously selecting the “fairly” corrupted
component and by re-estimating it as a mixture of two distributions using data-driven
PMC. As a result, some components become merged while equal number of components
split. The determination for splitting or merging is achieved by means of measuring the
similarity of the corrupted speech model to those of the clean model and the noise model.
The experimental results indicate that the suggested algorithm is effective in
representing the corrupted speech distributions and attains consistent improvement over
various SNR and noise cases.

Keywords: Additive Noise, Robust Speech Recognition, PMC, Log-normal,
Data-driven

1. Introduction

The difference between training and operating environments is a significant factor
affecting, in fact usually degrading the performance of speech recognition system. How
to make both conditions equal is one of the most essential issues in the development of
the actual applications of speech recognition technology and vigorous research has been
pursued to realize this goal. For example; classical noise removal or speech enhancement
methods, as an effort to bring the operating environment closer to the training envi-
ronment, have been used at the pre-processing level of speech recognition system.
Spectral subtraction, Wiener filter, AEC (Adaptive Echo Cancellation) and HMM (Hidden
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Markov Model) based noise suppression are some of the prominent examples [1]. While
these methods can be implemented independently fromb the fecognition system and have
shown considerable effects in noise canceling, they cannot guarantee attaining the
intelligibility essential to recognition, and in some cases they actually produce spectral
distortions in the restored speech signal. Another approach is to compensate for the
environmental influence at the featureA extraction ’Svtep. CMS (Cepstral Mean Subtraction)
is a representative technique belonging to this category. The third approach, which is
essentially the focus of this paper, is the compensation method based on acoustic speech
model. It aims at not removing the noise components but generating the speech model
matched to noisy environment. MAP (Maximum A Posteriori) and MLLR (Maximum
Likelihood Linear Regression) adaptation techniques and PMC (Parallel Model Combina-
tion) method are included in this categbry {11121

In this paper, we focus on the PMC method in an effort to improve recognition
performance under additive noisy conditions. In PMC, the goal is to estimate a new
speech model compensated for by noise components identical to the ensuing nbisy
conditions by using a clean speech model and a noise model independently. It exhibits an
outstanding ad{/antage in that it does not require anyvnoise-corrupted speech samples for
training and shows reasonably improved performance. In this paper, we identify the
inherent problem found in the log-normal approximation PMC and propose a remedial
algorithm to cope with that. Also, to overcome the limitation of spectral modeling in
log-normal technique, we selectively employ the data-driven PMC method.

The paper is organized as follows. We first review the basic concept of PMC method
in Section 2 and identify the acoustic modeling problem existing in PMC and then
describe the proposed algorithm in Section 3. The experimental procedures and results
are presented and discussed in Section 4. Finally, in Section 5, we make concluding

remarks and discuss future works.

2. Parallel Model Composition

In PMC, assuming that a recognition system has achieved optimal performance when
the training and testing conditions are identical, the clean speech model is transformed to
the corrupted speech model matched to the actual noisy environment. To generate the
noise-corrupted speech model, the clean speech model and noise model are used
independently. PMC is known to exhibit an outstanding advantage in that it does not

require additional training procedures with noisy speech database [2].
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2.1. Log-normal approximation
The composition of the speech model and noise model ‘is accomplished along a

mismatch function. The mismatch function of static speech feature is as follows.
040)=F(S!(1),Ni(1)=log(gexp(S (D) + exp(N (2))) 2.1)

In (21),049,S(7),Ni() denote log spectrum’s ith componeﬁt of corrupted
speech, clean speech and noisé signals respectively. The additive relation of clean speech
and noise in time is available in the linear spectral domain. Equation (2.1) shows such
relation using log spectrum of clean speech and noise. Gaussian form in log spectrum is
converted to log-normal distribution in the linear spectrum by transform. In log-normal
approximation, it is assumed that the. addition’ of two log—norrhal vdistributions comes to

have a log-normal form also. The mean and covariance of corrupted speech are
computed by equation (2.2) under such assumptions. In (2.2), 71,/1, 71 refer to mean

vectors of corrupted speech, clean speech and noise and 3 3,3 denote covariance

matrices of them respectively in log-normal distributions.

v+ p
T 25+ (2.2)

The mean and covariance of linear spectrum that has log-normal distribution are

obtained from the mean and covariance of log spectrum by (2.3).

pi=exp(ul+ %/2) 2.3)
3= pu exp(Z) —1]

Finally, we calculate the mean and covariance of corrupted speech’s log spectrum by

the following equations.

_ 5
:1\11‘2 log ( .Uz')_% log(_‘#/f"'l) (2.4)
5
fsz log( —— =+ l)
Hi Mj

2.2. Data-driven PMC
In log-normal approximation, the processing is applied to one-to-one between

Gaussian kernel of the clean speech model and one of the noise model. In order to



42 SPEECH SCIENCES Volume 9 Number 1 (MARCH 2002)

maintain the system’s framework of the clean speech model, each kernel function of the
corrupted speech must be estimated as a single Gaussian function. Generally speaking,
when two signals have Gaussian distribution functions and additive relations in their
exponential terms, the closer their means are, the more different the distribution of their
composition is from single Gaussian form [3]. Figure 1 shows the trend in the
distributions of corrupted speech in log spectral domain. The solid line is distribution plot
of actual signal and dotted line is estimate by single Gaussian function. When the mean
of noise is 0, the estimated Gaussian function of noisy speech is similar with the actual
signal’s distribution. However, the estimate digresses significantfy away from the actual

plbtting as the mean of noise becomes closer to that of clean speech.
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Figure 1. Log spectrum distributions (solid) and maximum likelihood Gaussian
distributions (dotted) of corrupted speech when mean and variance of
clean speech are 10.5 and 36. (a) noise mean is 0 with variance 0. (b)
noise mean is 6 with variance 0.

The data-driven PMC utilizes artificially generated “observations” to cope with the
problem appeared in the model combination addressed above. In particular, clean speech
and noise “observations” generated from each acoustic model are added in the linear
spectral domain and then, the noise-corrupted speech model is estimated with the
synthesized observations [3]. Instead of one-to-one processing at each Gaussian kernel,
the obserx}ations are generated from a mixture function of Gaussian kernels at each state
and the model is re-estimated with those samples, so the distribution of corrupted speech

can be modeled more adequately by multiple components.

3. Proposed Method

As shown in Figure 1, if two signals have an additive relationship in the linear-
spectral domain and their means are similar to each other in the log-spectral domain
where they have Gaussian distributions, the composition of the two signals has a

distribution considerably different from the maximum likelihood Gaussian distribution
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model. Data-driven PMC has been introduced to overcome the modeling limitation of
log-normal method, but it has a huge computational load to generate observations and
estimate parameters in every state of all acoustic models. In this paper, in an effort to
solve the problem in composing the distribution of log-normal PMC and to reduce the
computational load, we propose a modified PMC method in which the data-driven

technique is selectively employed.
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Figure 2. Block diagram of the proposed algorithm

First, the log-normal approximation PMC is applied to every Gaussian kernel of clean
speech model using noise model. Then, among the Gaussian kernels in estimate of noise-
corrupted model, we choose the components that fail to model the corrupted speech
adequately and re-estimate them into two split Gaussian distributions by employing
data-driven PMC. In the PMC scheme, the original system’s framework has to be
maintained, so it is impossible to change the number of kernels in each state. Therefore,
it needs to merge the same number of components as the split ones. The components for
splitting and merging are selected by means of similarity measure with clean speech and
noise distributions. If a distribution kernel of corrupted speech is significantly similar to
that of noise speech, it is reasonable to presume that a corresponding clean component is
vulnerable to noise corruption. In this case, merging the noise-like components into one
kernel at the same state is expected to affect little in the system’s performance. Since

the components that appear similar in both the clean model and the corrupted model are
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anticipated to be robust to noisy, they have to be maintained to guarantee a well-
behaved performance. Among the kernels of the corrupted model, the interest is in the
components whose distributions’ difference is prominent between the clean model and
the noise model. They represent the components corrupted ‘fairly” by the background
noise and may fail to reflect the corrupted speech adequately as addressed in Section II.
In the proposed method, we selectively find the components for splitting or merging by
using a similarity measure. In the case of splitting, the components are re-estimated into
two split Gaussian functions. In the case of merging, the components are merged by the
same number as that of the split cases.

To measure the similarity between distribution functions, we employ the Kullback-

Leibler divergence as follows [4]:

_ 2
I(p;q)=—§{1og(§j)+ il(%’iﬂ-%)—Z} 3.1)

Figure 2. shows a block diagram of the proposed algorithm.

4. Experimental Results

As a baseline, we constructed an isolated word recognition system using HTK [5].
Speech signals are analyzed within a 25 ms frame with 10 ms lapped into 39 th order
feature vector that has 13 th order MFCCs including log energy and their 1 st and 2 nd
derivatives. The number of Mel filter banks is 24. Context-independent 44 PLU (Phone-
like unit) models are uséd aﬁd each HMM model is of 3-state left-to-right structure
without any skip path. Every state has a continuous output probability function, a
mixture consisting of 8 Gaussian components with diagonal elements only in the
covariance matrix. The vocabulary to be recognized consists of 452 Korean words.

In the experiment, we used speech samples contained in Korean Speech DB PBW452
constfucted for common use [6]. A total of 7,232 samples generated by 8 adult males
recording two times are used for training the acoustic models using Baum-Welch
algorithm. Data used for recognition testing are the 904 utterances of two males who
were not part of the training set.

As shown in Table 1, we examined the baseline system’s performahce using clean
speech sampieé and obtained 94.47% as recognition rate. In the experiments, the
corrupted speech sambles are generated by adding artificial white Gaussian noise_to clean
spéeéh samples along given SNR. The 10 dB corrupted speech samples showed 16.81% in
recognition using the clean speech model. It indicates that the difference between training

and testing conditions brings drastic degradation in performance of the recognition
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system. For recognition with the training model using 10 dB corrupted speech data, we
obtained 90.27% using 10 dB noisy samples. Although the performance falls due to some
units that lose discriminative properties under noisy conditions, the identical conditions of

training and testing should guarantee the optimal results.

Table 1. Recognition test results - white noise case. (%)

Clean 10 dB 5 dB 0 dB
Clean(no processing) 94.47 16.81 2.11 0.44
Matched 90.27 85.07 74.34
Matched(static) 81.75 65.71 39.71
Data-driven PMC 78.98 62.28 34.40
Log-normal PMC 76.88 60.51 30.09
Proposed PMC 77.88 61.50 31.08

Table 2. Number of Gaussian components undertaken for data-driven PMC.

Proposed PMC
10 dB 5 dB 0 dB
1,056(100%6) 79(7.48%) 135(12.78%) 158(14.96%)

Fully data-driven

Table 3. Recognition test results - other noise cases. (%)

Pink noise Speech babble
10 dB 0 dB 10 dB 0 dB
Clean(no processing) 35.18 0.88 45.46 3.32
Log-~normal PMC 77.32 22.90 84.18 36.50
Proposed PMC 7799 23.56 84.18 36.84

Since the compensation is applied to only static parameters in the experiments of
PMC, we trained the model with only static parameters matched to the noisy condition
and attained 81.75% recognition rate. This result is to be used as the benchmark for
comparison on the performance of the compensation methods.

We compared the proposed method to the log-normal approximation PMC in terms of
recognition rate. The acoustic model for noise is estimated as one state with single
Gaussian distribution function. The model compensation was performed over the mean
and variance of a static parameter. We obtained 76.88% and 30.09% for 10 dB and 0 dB
respectively from the model compensated for by the log-normal PMC. The increasing
rates reflect the fact that the log—normal PMC is effective in compenéating and
generating the condition-matched model. The proposed PMC method brought 77.88% at
10 dB and 31.08% at 0 dB, which show an increment of about 1.0%. The improved
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results indicate that the splitting and re-estimation process of the proposed scheme
indeed contributes to the appropriate modeling of the corrupted speech.

Table 2 shows a comparison of the number of Gaussian components undertaken for
“observations” generated and the parameters estimated by the data-driven method. Since
the data-driven processing requires a huge computational load, the results in Table 2
confirms the system'’s efficiency. Only 7.48% components are used compared to the fully
data-driven PMC under 10dB SNR. The computation complexity of Gaussian comparison
processing is so trivial, therefore an additional 7.48% computational load of the fully
data-driven led to the improved performance (77.88%), which is a middle figure between
log-normal and data-driven method.

For other kinds of noise, we investigated the consistency in effectiveness of the
proposed algorithm and presented the results in Table 3. Pink noise and babble noise
contained in NOISEX-92 are used for the experiments. When using pink noise, the
experiments attained improved results at 0.67% and 0.66% under 10 dB and 0 dB
respectively. For speech babble noise, we obtained 0.34% increase in recognition rate at
0 dB SNR. From the experiments, we validated the improvement consistency in
recognition performance for pink noise and babble noise cases. In the case of babble
noise, from the fact that the recognition rate is comparatively high with the clean model,
it is believed that the substantially small improvement is due to the rare case of less

influence of noise to speech.

5. Conclusions

In this paper, we have proposed an algorithm that remedies the acoustic modeling
problem inherent in the log-normal PMC aimed at robust speech recognition. By
employing a selective data-driven PMC, the proposed scheme re-estimates the corrupted
speech model by splitting and merging the results of the log-normal procedure. The
results show that the suggested algorithm is effective in representing the corrupted
speech distributions and achieves consistent improvement over various SNR and nose

cases.
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