In vivo Metabolism of Flupyrazofos into Plutella xylostella (Lepidoptera: Yponomeutidae) and Spodoptera exigua (Lepidoptera: Noctuidae)

배추좀나방과 파밤나방의 채내에서 Flupyrazofos의 대사

  • Lee, Sang-Guei (National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Lee, Hoi-Seon (Division of Applied Biotechnology, College of Agriculture, Chonbuk National University) ;
  • Hwang, Chang-Yeon (Department of Agricultural Biology, Chonbuk National University) ;
  • Han, Man-Jong (National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Park, Hyung-Man (National Institute of Agricultural Science and Technology, Rural Development Administration)
  • Published : 2002.09.30

Abstract

In vivo metabolism study was carried out to find out the biochemical or metabolic tolerance mechanism between Diamond backmoth (DBM), Plutella xylostella and Beet armywarm (BAW), Spodoptera exigua to flupyrazofos. They showed some differences between the DBM and BAW. About 20% of flupyrazofos applied to the 3rd instar larvae of DBM was metabolized within 1 h and about 50% of that was metabolized within 4 h. The metabolites of flupyrazofos-oxon in 3rd instar larvae of DBM were increased 10 times more at 4 h than 1 h after application. The amounts of flupyrazol were nearly same between at 1 h and 4 h. The amount of unknown and origin increased 2 and 3 times more at 1 h than 4 h after application, respectively. In the 4th instar BAW larva, about 50% of flupyrazofos was metabolized within 1 h and about 70% of that was metabolized within 4 h. As metabolites, the amounts of flupyrazofos-oxon increased 2 times more at 4 h than 1 h after application. The amounts of flupyrazol increased 4 times more at 4 h than 1 h after application. The amount of unknown and origin increased 2.5 and 2 times more at 4 h than 1 h after application, respectively. From the study, it is supposed that hydrolytic enzyme, esterase, cleave the alkyl bond of flupyrazofos and conjugates with flupyrazofos. This seems to be the main tolerance mechanism of BAW to flupyrazofos.

배추좀나방과 파밤나방에 대한 flupyrazofos의 작용기작을 구명하기 위하여 한국화학연구소에서 분양을 받아 실내에서 19세대 누대 사육한 배추좀나방과 포장에서 채집하여 실내에서 인공사료를 이용하여 25세대 누대 사육한 파밤나방을 대상으로 $^{14}C$-flupyrazofos를 처리하여 두 종간의 생체내 대사물을 조사한 결과는 다음과 같다. flupyrazofos의 생체내 대사물은 flupyrazofos-oxon, flupyrazol, unknown으로 분리되었으며, 대사량은 약제처리 1시간 후와 4시간 후에 배추좀나방에서 flupyrazofos가 80.3%와 53.5%, flupyrazofos-oxon이 0.5%와 5.3%, flupyrazol이 1.1%와 1.3%, unknown이 4.5%와 11.6%, 전개되지 않은 물질이 5.3%와 18.5%이었고, 파밤나방에서 flupyrazofos가 48.0%와 23.8%, flupyrazofos-oxon이 1.3%와 3.2%, flupyrazol이 4.8%와 16.0%, unknown이 11.0%와 26.5%, 전개되지 않은 물질이 13.7%와 23.1%이었다. 따라서 시간이 경과할수록 flupyrazofos-oxon이 배추좀나방에서는 크게 증가한 반면 파밤나방에서는 적게 증가하였고, 배추좀나방에서는 flupyrazol, unknown, 전개되지 않은 물질 등이 상대적으로 적은 반면 파밤나방에서는 상대적으로 많았다. 이상의 결과로 볼 때 파밤나방에서는 일반적으로 곤충에서 생화학적 저항성 기구로 잘 알려진 가수분해효소의 일종인 esterase의 활성이 증가하여 alkyl 결합을 끊어 무독화 시키거나 flupyrazofos와의 결합체 역할이 강하게 작용하는 것으로 판단된다.

Keywords

References

  1. Brown, A.W.A. (1978) In Ecology of Pesticides. John Wiley & Sons, New York, USA
  2. Chu, Y.I. (1986) The migration of diamondback moth. In Talekar, N. S. and Griggs, T.D. (eds) Diamondback moth Management Proceedings of First International Workshop. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan (ROC). 77-81
  3. Georghiou, G.P. and Saito, T. (1983) In Pest Resistance to Pesticides. Plenum Pub., New York, USA
  4. Hayes, W.J. and Laws, E.R. (1991) In Handbook of Pesticide Toxicology. vol. 1, Academic Press, New York, USA
  5. Hwang, Ki - J. (1989) Phosphoric and thiophosphonic acid derivatives of 5-hydroxypyrazoles compositions and use. pp.11. Korea Research Institute of Chemical Technology
  6. Kim, K., J,H. Kim and Y.H. Kim. (1997) Study on Physiochemical Properties of Pesticides. Agricultural Chemistry and Biotechnology 40(1):76-79
  7. Kono, Y. and Y. Manabe. (1983) Insecticidal activity of TIA-230 and aliesterases in several insect species. J. Takeda Res. Lab. 42(3/4):330-337
  8. Lee, N.J, (1995) The flupyrazofos manual. Sungbo Chemicals Co., Ltd. pp.81
  9. Lee, S.C., Y.S. Cho and D.l. Kim. (1993) Comparative study of toxicological methods and field resistance to insecticides in diamondback moth (Lepidoptera: Plutellidae). Korean J. AppI. EntomoI. 32(3):323-329
  10. Lee, S.G., C.Y. Hwang, J.K. Yoo, S.W. Lee, B.R. Choi and J.O. Lee. (1997) Insecticidal activity of flupyazofos against Plutella xylostella (Lepidoptera: Yponomeutidae) and Spodoptera exigua (Lepidoptera:Noctuidae). The Koean Jounal of Pesticide Science 1(1):48-51
  11. Miyata, T., T. Saito and V. Noppum. (1986) Studies on the mechanism of diamondback moth resistance to insecticides. In Talekar N. S. and Griggs T. D. (eds.) Diamondback moth management. Proceedings of the first international workshop. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan (ROC). pp.347-355
  12. Park, H.M., Y.D. Lee and S.Y. Choi. (1991) The absorption and metabolism of fenobucarb and carbofuran by susceptible and carbamate insecticide-selected strains of the brown planthopper(Nilaparvata lugens Stal). Korean J. AppI. Entomol. 30(1):10-17
  13. Ripper, W.E. (1956) Effect of pesticides on balance of arthropod populations. Ann. Rev. Entomol. 1, pp.403 -438
  14. Shorey, H.H. and R.L. Hale. (1965) Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J. Econ. EntomoI. 58:522- 524
  15. Sun, C.N., T.K. Wu, J.S. Chen, and W.T. Lee. (1986) Insecticide resistance in Diamondback moth. In Talekar N. S. and Griggs T. D. (eds.) Diamondback moth management. Proceedings of the first international workshop. Asian Vegetable Research and Development Center, Shanhua, Taman, Taiwan (ROC). pp.359-371
  16. Yang, J.E., B.Y Cho and K.Y. You. (1997) Leaching and Absorption of FIupyrazofos. Korean Journal of Environmental agriculture. 16(1):72-79