DOI QR코드

DOI QR Code

비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes

  • 조규원 (한국과학기술원 항공우주공학과 대학원) ;
  • 오우섭 (국방과학연구소) ;
  • 권오준 (한국과학기술원 항공우주공학과) ;
  • 이인 (한국과학기술원 항공우주공학과)
  • 발행 : 2002.12.01

초록

본 연구에서는 이차원에서 비정상 비점성 유동해석을 위한 비정렬 동적 편자 기법을 개발하였다. 유동해석 기법은 시간에 대해 2차의 정확도를 갖는 내재적인 시간적분법을 사용하였으며, 격자중심의 유한 체적법과 Roe의 풍상차분법을 이용하여 공간에 대한 차분화를 하였다. 시간과 공간에 대한 정확도를 증가시키기 위해서는 해에 따라 원하는 위치에 격자점들을 임의로 추가할 수 있는 비정상 동적 적응격자 기법을 사용하였다. 이를 이용하여 이차원의 2자유도를 갖는 스프링 에어포일 시스템의 와류와의 간섭현상에 따른 공탄성적 변위를 예측하였다.

A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

키워드

참고문헌

  1. Jones, H. E., "Full-Potential Modeling of Blade-Vortex Interactions," NASA TP-3651, 1977.
  2. Damodaran, M. and Caughey, D. A., "Finite-Volume Calculation of Inviscid Transonic Airfoil-Vortex Interaction," AIAA Journal, Vol. 26, No. 11, 1988, pp. 1346--1353. https://doi.org/10.2514/3.10046
  3. Lee, S. and Bershader, D., "Head-On Parallel Blade-Vortex Interaction," AIAA Journal, Vol. 32, No. 1, 1994, pp. 16--22. https://doi.org/10.2514/3.11945
  4. Lin, S. Y. and Chin, Y. S., "Numerical Study on Transonic Blade-Vortex Interaction : Flowfield Analysis," AIAA Paper 95--0726, 1995.
  5. Ng, N. and Hillier, R., "Numerical Simulation of the Transonic Blade-Vortex Interaction," Proceedings of Unsteady Aerodynamics, London, UK, 1996, pp. 8.1--8.11.
  6. Srinivasan, G. R. and McCroskey, W. J., "Euler Calculations of Unsteady Interaction of Advancing Rotor with a Line Vortex," AIAA Journal, Vol. 31, No. 9, 1993, pp. 1659--1666. https://doi.org/10.2514/3.49095
  7. Wu, J. C., Hsu. T. M., Tang, W., and Sankar, L. N., "Viscous Flow Results for the Vortex-Airfoil Interaction Problem," AIAA Paper 85--4053, 1985.
  8. Srinivasan, G. R., McCroskey, W. J., and Baeder, J. D., "Aerodynamics of Two-Dimensional Blade-Vortex Interaction," AIAA Journal, Vol. 24, No. 10, 1986, pp. 1569--1576. https://doi.org/10.2514/3.9486
  9. Srinivasan, G. R. and McCroskey, W. J., "Numerical Simulations of Unsteady Airfoil-Vortex Interactions," Vertica, Vol. 11, No. 1, 1987, pp. 3--28.
  10. Steinhoff, J. and Raviprakash, G. K., "Navier-Stokes Computation of Blade-Vortex Interaction Using Vorticity Confinement," AIAA Paper 95--0161, 1995.
  11. Tang, L. and Baeder, J. D., "Accurate Euler Simulation of Parallel Blade-Vortex Interaction, " Proceedings of 53rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, 1997, pp. 708--718.
  12. Ng, N. and Hillier, R., "Numerical Simulation of the Transonic Blade-Vortex Interaction," AIAA Paper 97--1846, 1997.
  13. Oh, W. S., Kim J. S., and Kwon, O. J., "Numerical Simulation of Two-Dimensional Blade-Vortex Interactions Using Unstructured Adaptive Meshes," AIAA Journal, Vol. 40, No. 3, 2002, pp. 474-480. https://doi.org/10.2514/2.1670
  14. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  15. Frink. N. T., "Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes," AIAA Journal, Vol. 30, No. 1, Jan. 1992, pp. 70-77. https://doi.org/10.2514/3.10884
  16. Edwards J. W., Bennett R. M., Whitlow W. Jr. , and Seidel D. A., "Time Marching Transonic Flutter Solutions Including Angle-of-Attack Effects," Journal of Aircraft, Vol. 20, No. 11, 1983, pp. 899-906. https://doi.org/10.2514/3.48190
  17. Willcox, K. E., "Aeroelastic Computations in the Time Domain Using Unstructured Meshes" , Master Thesis, MIT, 2000.
  18. an , D. and Cheng, J.C., "Unstructured Euler Flutter Analysis of Two Dimensional Wing-Tail Configuration", AIAA Paper 94-0284, 1994.
  19. 김동현, 박영민, 이인, 권오준, “비정렬 오일러 코드를 이용한 2자유도계 에어포일의 유체/구조 연계해석”, 한국한공우주학회지 제 29권, 제 4호, 2001, pp. 8-19
  20. Rausch, R., Batina, J., and Yang, H., "Spatial Adaptation Procedures on Unstructured Meshes for Accurate Unsteady Aerodynamic Flow Computation," AIAA Paper 91-1106, 1991.
  21. Landon, R. H., "NACA0012 Oscillatory and Transient Pitching," Compendium of Unsteady Aerodynamic Measurements, R-702, AGARD, 1982.
  22. 김동현, 이 인 , “유격 비선형성이 천음속/초음속 플러터 경계에 미치는 영향에 관한 연구” 한국항공우주학회지, 제26권, 제9호, 1999, pp. 51-61.