References
- Baik, K.S., J.H. Choi, and C.N. Seong. 2000. Cellulose degradation and extracellular enzymatic activity of the mud flat in Sunchon Bay. Kor. J. Microbiol., 36(2), 130-135 (In Korean).
- Blaabjerg, V., K.N. Mouritsen, and K. Finster. 1998. Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquat. Microb. EcoI., 15, 97-102. https://doi.org/10.3354/ame015097
- Boschker, H.T.S., J.F.C. de Brouwer, and T.E. Cappenberg. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol. Oceanogr., 44,309-319. https://doi.org/10.4319/lo.1999.44.2.0309
- Boschker, H.T.S. and T.E. Cappenberg. 1998. Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherlands. FEMS Microbiol. Ecol., 25, 79-86. https://doi.org/10.1111/j.1574-6941.1998.tb00461.x
- Choi, G.G. and G.-H. Lee. 1996. Interaction between saprophytic bacterial distribution and their extracellular enzyme activities in the sediment of the Yellow Sea near Seochon. The Microbiology and Industry, 22, 119-126 (In Korean).
- Chrost, R.J. 1989. Characterization and significance of glucosidase activity in lake water. Limnol. Oceanogr., 34, 660-672. https://doi.org/10.4319/lo.1989.34.4.0660
- Danovaro, R., M. Armeni, A. Dell'Anno, M, Fabiano, E. Manini, D. Marrale, A. Pusceddu, and S. Vanucci. 2001. Small-scale distribution of bacteria, enzymatic activities, and organic matter in coastal sediments. Microb. Ecol., 42,177-185.
- Ellis, R.J., I.P. Thompson, and M.J. Bailey. 1995. Metabolic profiling as a means of characterizing plant-associated microbial communities. FEMS Microbiol. Ecol., 16, 9-18. https://doi.org/10.1111/j.1574-6941.1995.tb00263.x
- Garland, J.L. and A.L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbonsource utilization. Appl. Environ. Microbiol., 57, 2351-2359.
- Giovanni, G.D., L.S. Watmd, R.J. Seidler, and F. Widmer. 1999. Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Microb. Ecol.,37, 129-139. https://doi.org/10.1007/s002489900137
- Hines, M.E. 1991. The role of celiain infauna and vascular plants in the mediation of redox reactions in marine sediments. p. 275-286. In: Diversity of Environmental Biogeochemistry Vol. 6., ed. by J. Bcrthelin. Eiservier, Amsterdam, The Netherlands.
- Hines, M.E., R.S. Evans, B.R. Sharak Genthner, S.G. Willis, S. Friedman, J.N. Rooney-Varga, and R. Devereux. 1999. Molecular phylogenetic and biogcochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. App. Environ. Microbiol., 65, 2209-2216.
- Hoppe, H.G. 1993. Use of fluorogenic model substrates for Extracellular Ezyme Ativity (EEA) measurement of bacteria. p. 423-431. In: Handbook of Methods in Aquatic Microbial Ecology, eds. by P.F. Kemp, B.F. Sherr, E.B. Sherr, and J.J. Cole. Lewis Pub. Boca Raton, Florida, USA.
- Kroer, N., T. Barkey, S. Sorensen, and D. Weber. 1998. Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol. Ecol., 25, 375-384. https://doi.org/10.1111/j.1574-6941.1998.tb00489.x
- Kwon, KK., H.Y. Cho, and H.K. Lee. 1998. Vertical distribution of heterotrophic bacteria, sulfate reducing bacteria and aminopeptidase activity in the tidal flat of Taebudo. Ocean Res., 19(2S), 73-80 (In Korean).
- Lee, G.-H. 1987. Environmental factors affecting seasonal distribution of heterotrophic bacteria in Kum River Estuarine sediments. Kor. J. Microbiol., 25, 137-143 (In Korean).
- Lee, M.-S., S.G. Hong, D.-H. Lee, C.-K Kim, and K.S. Bae. 2001. Bacterial diversity in the mud flat of Suncheon Bay, Chunnam Province, by 16S rRNA gene analysis. Kor: J. Microbiol., 37, 137-144 (In Korean).
- Lillebo, A.I., M.R. Flindt, M.A. Pardal, and J.C. Marques. 1999. The effect of macrofauna, meiofauna and microfauna on the degradation of Spartina maritima detritus from a salt marsh area. Acta Oecologica, 20, 249-258. https://doi.org/10.1016/S1146-609X(99)00141-1
- Mayer, M.M. 1989. Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnol. Oceanogr., 34, 973-981. https://doi.org/10.4319/lo.1989.34.6.0973
- Poremba, K .1995. Hydrolytic enzyme activity in deep-sea sediments. FEMS Microbiol. Ecol., 16, 213-222. https://doi.org/10.1111/j.1574-6941.1995.tb00285.x
- Schubauer, J.P. and C.S. Hopkinson. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnol. Oceanogr.,29, 1052-1065. https://doi.org/10.4319/lo.1984.29.5.1052
- Schwaner, N.E. and N. Kroer. 2001. Effect of plant species on the kinetics of conjugal transfer in the rhizosphere and relation to bacterial metabolic activity. Microb. Ecol., 42(3), 458-465. https://doi.org/10.1007/s00248-001-0001-4
- Verschuere L., V. Fievez, I. Van Vooren, and W. Verstraete. 1997. The contribution of individual populations to the Biolog pattern of model microbial communities. FEMS Microbiol. Ecol., 24, 353-362. https://doi.org/10.1111/j.1574-6941.1997.tb00452.x
- Whiting, G.J., E.L. Gandy, and D.C. Yoch. 1986. Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina altemiflora and carbon dioxide enhancement of nitrogenase activity. Appl. Environ. Microbiol., 52, 108-113.