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New edge detection algorithm and its application to
a visual inspection
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ABSTRACT

We describe a characteristic behavior of edge signal intensity, the strictly monotonic variation of intensity
across edges and propose a new algorithm for edge detection based on it. We define an extended directional
derivatives, which is nonlocal and beyond scaling in the pixel space, to describe that the algorithm is adaptive
to the various widths of edges and relevant as an optimal edge detection algorithm. As an industrial
application of the algorithm, we discuss a simple computer vision procedure for an example of visual

inspection
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1. Introduction the sharp discontinuity rarely appears in real signals
and the step edge is blurred into the ramp edge. In

An edge signal is detected as a significant local the real image, the edge may have widely varying

change in the image intensity and its ideal features ramp width or acuity. Therefore, the task of

should be associated with a discontinuity in either detecting and locating edge features precisely in real

the image intensity or its first order derivatives. images poses a challenging problem in usual and

However, because of the low frequency mode effect have inspired the development of various advanced

introduced by the physical limit of sensing devices, algorithms for the optimal edge detector.[1-9] One
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of significant early contributions to this subject was
made by Marr and Hildreth,f1] and further
developed by Canny[2] employing different scales in
the inspection of intensity changes. More operational
refinements of their strategy have been accomplished
by using the matched filter for detecting and
locating edges.[3-6]

From the different physical origins, there can
appear sharp lines along with blurred boundaries in
the same image. Accordingly, the reliable detection
of the significant intensity changes cotresponding to
the edges with various widths requires adjustments
in filter length to construct several edge maps with
respect to each of several pertinent length scale. In
the edge detection algorithm by template matching,
we assume a specific functional form for the
intensity change associated with edge. In the
Gaussian model of edge template, the profile of
edge signal intensity is described by the integral of
a Gaussian added to a fixed background, where we
assume the strictly monotonic intensity profile of
edge and two parameters for the edge detector. The
one is the amplitude of Gaussian representing the
magnitude of transition, i. e. the difference in the
intensity between the regions bounded by the edge,
and the other is the variance of Gaussian indicating
the signal slope and hence the edge acuity.
Therefore in order to handle different length scales
implied by varying edge width, we may require to
adjust the filter length, which is accomplished by
the adjustment of the Gaussian variance as a
parameter of the edge detector in practice.[3-6,9]

In this paper, we modify the directional
derivative extensively to introduce an extended
(nonlocal) directional derivative of grey level as the
signal attribute characterizing an edge in the pixel
space, which is to be referred to as adaptive
directional derivative of grey level. In terms of this
attribute, we can detect an edge by verifying the
presence of a region with strictly monotonic change
of intensity without bothering to adjust the edge
width parameter such as the Gaussian variance. In

order to locate a single edge pixel, we find the
local center of directional derivative within the edge
width

In the next section, we introduce the adaptive
directional derivative of grey level to suggest a
criterion for the verification of the presence of
edges. In the section 3, we explain how to locate
the edge pixel exactly and describe the edge
detection algorithm. An example of applying the
algorithm accompanied by the median filtering or
Gaussian low pass filtering[7,8,9] as preprocessing is
presented in the section 4. As another example of a
industrial application, we suggest a simple computer
vision procedure for visual inspection, where we can
represent the (features of) image simply by
resampling the edge pixels on a grid without extra
descriptors such as chain codes.[10,11] In the final
section, we discuss some other aspects of the
algorithm.

2. New criterion for identifying ramp
edges

The edge pixels correspond to the boundary
points located between some different regions
representing objects or background in the image.
Therefore, the neighborthood of an edge point
always includes some points belonging to each of
the different regions. On the contrary, an interior
pixel of a region in the 2-dimensional image should
have all of its 8 neighboring pixels similar in the
intensity (or color components) of image. Hence the
pixel is an edge point only if it has at least one
neighboring pixel whose intensity is different from
the others in the neighborhood (or the pixel itself,
equivalently) more than the value allowed by the
similarity criterion, say T in practice. That is, the
edge point has a significant intensity change larger
than the threshold value T between one of its
neighboring pixels at least and may be associated



New edge detection algorithm and its application to a visual inspection 1727

with some discontinuities in the image intensity. For
the sake of the simplicity in discussion. we assume
that the image is gray-scaled. With respect to the
set of nonnegative integers Z., let (i, j) be the
spatial rectangular coordinates of a digitized image
in pixel units with 7, jeZ,. Then, the image

function is defined as a mapping
1 Z.xZ, -G

where f(i, j)e G is the grayscale intensity of a
pixel whose coordinates are (i, ), with 0</<W
and 0<j<H. The hight and width of the digitized
image f are identified as H and W respectively with

H,WeZ,. If the grayscale intensity is quantized by
[ levels, G={0,1,-,{—1} from the darkest level
0 to the brightesst /—1. We introduce the pixel
position vector p= (7, j) and define eight direction

vectors as

u,.=+(1,0), wu.,==2(0,1),
ui+Et(1y1)S ut—Ei(lv_l)’ (1)

where #., and %,_ are not

properly
normalized. In terms of these vectors, we define the
directional derivatives of a function F at p in the

pixel space as

DeF(p)=F(p+ uz)— F(p)
= —D_,F(p+ uy) 2

where @ parametrizes the eight directions to the
neighboring pixels of p with 2 ., = + u, in the
above definition (1). D, is the natural equivalent

to the directional derivative of the continuum space

dF = Lim F(ﬁ"'AQaug)_F(b)
dQ'Q Aqs—0 AQH

if 2, is normalized. Applying D, to the image
function f, we obtain the directional derivative of
gray level (DDGL)

v D)= Df (P)=F(p+ uy)—f(p), (3

which can be used to determine the boundary
features of the image. Since the gray level
difference between the edge pixel and at least one
of its neighboring pixels is larger than some
threshold value T, we can identify the pixel p as
v )| 2T

with respect to the absolute value of a directional

an edge pixel only if the criterion

derivative of gray level for one of @ directions at
p is satisfied When p is an edge pixel with
|vs(£)| =T, we can find that p+ u, is paired to be
an edge pixel also since wv,(p)=—v_,(p+ u,)
doubly identifying the same edge feature of an object in
the image. The edge pixels detected by the criterion is
gathered and linked to construct an edge or the other
edge features such as points and lines. Therefore, it can
be easily seen that we can detect all of these edge
features by using this criterion alone without employing
any other special masks for each of them. For example,
the usual point detection mask is applied to the pixel p
producing  the  response — 2 vs(p) and
- (k:§ u.))(vx(iﬁ k)+v_.(p+ k)) is the response
of the usual line detection mask in the y direction. With
respect to the typical point and line, v,(p) and
vo(dp+ wu,) in the above reponses of detection
mask have the same signs and some relevant threshold
values for the absolute values of the above mask
responses results in the equivalents to our simple criterion
by v,(p). In order to detect discontinuities in general,
we can use the gradient of the image #. Using the
Sobel mask, the x component of the gradient is
represented as
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G(p)= 2(vp+ u _)+v()
+Z)+(b+ u_+)+v+(b)
+v (p+ u__)+ov_(p) @

With respect to the typical sharp edge normal to
x direction for example, the y component of the

gradient G,(p)=0, and the DDGL’s v,(p) and
ve(p+ uy) in G(p) of (4) have the same

signs. Therefore the result from detection criterion
using a certain relevant threshold value for the
magnitude of the gradient V GZ+ G? is equivalent
to our simple criterion by v,(p).

In practice, edges are blurred to yield ramp-like
profile due to optical condition, sampling rate and
other image acquisition imperfection, with degree of
blurring being a measure of the performance of
image generating system. However, the previous
criterion may not detect a ramp edge with gradually
changing gray level. In order to include ramp edges,
we modify the DDGL to define the adaptive
directional derivative of gray level (ADDGL)

Ag(ﬂ)z[lﬂasa(ﬁ).s,(p— ,,0)]’ (5)
;05k+1,1\/,(p‘k)09(p+ k u,)

where

L3
N(p. k)= 3 Iso(p+n #9l8 5 ciprn o> ©

+1,  2(p)>0
se( D)= 0, v(p)=0 )]
—1, Ug(p)<0
and § ( , is the Kronecker delta. According to

this definition, A ,(p) has a nonvanishing yalue

only when p is the starting pixel of a strictly
monotonic interval of the profile of f in the &

direction. That is, if f starts to increase or

decrease strictly at p and ends at p+w u, from

Ff(p) to f (p‘+ w u,) along the ¢ direction then

Ag(p) = :Z_:Ug(ﬂ'i“n ua)

=f(p+w ug)—rF(p). (®)

Since the ADDGL is defined extensively over

some  consecutive  pixels in  general, the

normalization irregularity of #, is not significant
in contrast to the case of DDGL. Using the pairing
property  va(ptn up=—v_,(p+(ntl) u,),

this equation can be rewritten as

Ae(ﬂ)=‘ Z;U~s(ﬂ+w ug+(w—1—-n) u_g)

w—1
=— Zov_g(p+w ugtn u_,)

=—(f(p+twup+w u_g)—F(p+w u,))
=— A _(ptw ugy). ©)

According to the definition, & ,,(p+4h u,)=0
for 0<h<w. Hence we can notice that the
ADDGL A ,(p) specifies the strictly monotonic
change of intensity and the corresponding interval
[, p+w u,] along some fixed & direction.

In the Gaussian model of a ramp edge, the edge
signal is described by the integral of a Gaussian
added to a background object signal. For the
directional derivative in the direction normal to an
edge, whose absolute value is equal to the
magnitude of gradient, this implies a functional
form of template

N A @
Buf= 0,00 = s exp| = 5 10

in terms of the length parameter ¢, along the

edge normal direction. Here, the amplitude A
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indicates the sign and magnitude of the transition in
the image intensity between the two edged regions
and the standard deviation o describes the slope of
edge signal i. e. the edge acuity or edge width.
Then the directional derivative of the direction with
angle ¢ from the edge normal direction has the
template function

8¢fE U¢((I¢): (COS¢)anf

A @
= Voo, exp(* 2 ), (11)
where o,= cods ) and g = cgsn e Since

loglap)l=1(cosd)v,(¢g,)I<lv,(g,)] and v (q,)
is equivalent to v,(p) for some ¢, the previous

criterion |vy(p)|= T reduces to

o, (a,)) =V GE+G:=T, (12)

where |v,(q,)| is the absolute value of the
directional derivative in the edge normal direction
and equal to the magnitude of gradient \/Gi——FGi
of the image intensity. Therefore the criterion
lvg(p)|2T is equivalent to that of the usual
edge detection algorithm employing the magnitude
of gradient as the signal attribute characterizing an
edge. With respect to an ramp edge described by
the template function (11), the condition (12) is
represented as

10,0 | == > 7(0), (13)

where we note that the threshold value T
should be parametrized according to the edge width
or the length scale of edge detection filter described
by o in such a way as T(o)= TO/(\/ETO‘) in
order to detect the edge signals with varying
widths. That is, the significant change of image

intensity by |A|>= T, across the ramp edge, say,
can be detected as an edge by adjusting the edge

detector parameter 7(o) according to the edge

width parameter ¢ under the condition (13). In the
actual application, we have no idea of fixing the

exact edge pixel with ¢,=( in advance. Therefore
instead of the criterion (13), we should employ the

criterion |v,(p)|=T(o) or

lve(p)| = T (o), 13y

which can cause multiple identification of edge
pixels at a single crossing of a ramp edge and
demand an extra thinning to locate an exact edge
pixel.

We can employ our ADDGL as the signal
attribute  characterizing an edge instead of the
magnitude of gradient i. e. the absolute value of
DDGL in the edge normal direction. With respect
to the template of ramp edge satisfying the equation
(11), for example, the ADDGL in the direction with
angle ¢ from the edge normal direction is

estimated as

A, o+n/2
a4(p)= (14)
0, ¢=n/2

at the starting point p of the strictly monotonic
change of intensity for a ramp edge along the fixed
direction, which is independent of ¢. That is,
& 4(p) detect the significant change A in the
gray level associated with an edge unless the
direction is tangential to the edge, regardless of the
edge width. Therefore, we can find that A ,(p)
can detect the ramp edges which are strictly
monotonic in gray level along the @ direction
except the edge parallel to the ¢ direction, which
can be detected by another & ,.(p) with a

different direction @°. In order to identify ramp
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edges, we thus implement a new criterion by A 4

(CRE)
directional derivative of gray level at p is larger
than T, i e |ap)|=T for one of @

directions.

The absolute value of an adaptive

Employing this criterion, the local maximal length

interval [ p, p+ w u,] of strictly monotonic gray
level along the +§  directions

| F(p+w u)—F(p)| =T is identified to belong

satisfying

to the width of a ramp edge, and one of w+1
pixels in the interval is determined as the edge

pixel. Since the ADDGL 4 ,(p) or A (,2(1;)

of two non-parallel directions 4, and 6, can
detect the edges of all directions, we can use the
two fixed directions §,=x and @,=y in
practice. Hence we can describe our edge detection
strategy as the following procedure:

P1. We scan the image along the x direction to
find the strictly monotonic intervals such as

[p, p+w, u,] over which the variation of

intensity | F(p+w, w)—F(p)] i e |2 (D]
satisfies the criterion (CRE).

P2. Locate an edge pixel within the interval

[p, P+ w, ul

P3. Repeat the procedures with respect to the y
direction to find the strictly monotonic interval such
as[gq, g+ w,u,] and locate an edge pixel in

between.

Here, we note that this procedure can detect an
edge regardless of spatial blurring or scaling which
are concerned with the edge width parameter o,
and extract the exact edge only if a relevant
method of locating edge pixels within the strictly
monotonic intensity variation of ramp edges is

presented.

3. Location of edge pixels and edge
detection algorithm

In the previous section, we described the method
how to verify the presence of an edge in detail.
However, in order to complete the edge detection
algorithm, we have to be provided with a way how
to locate an edge pixel exactly as stated in the
above procedure. In the scan of image along a
fixed @ direction, the range of location of an edge

is Ttestricted to the strictly monotonic interval

[p, p+w u,] of intensity change with the

ADDGL A ,(p) satisfying the criterion (CRE). In

order to locate an edge pixel within that interval,
we define the local center of directional

derivative(LCDD) as

w—1
Z::Q[ith uglvo(p+# uy,)

w -

1
;ovg(p—k koug)

ptkcu,=

w—1
;::Okva(ﬁk %)
2,(p)

=p+ u,. (15

In the pixel space, k. should be rounded off to

obtain the integer value

w—

)
Okvg(erk uy)
A 4(D)

(k) =round (16)

and the edge pixel is determined as

p+ (ko) u,, which is represented as
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Pt (k) ug=p+hkcus—Lkc— (k)] u,

B ug;[p-i—k wylvg(p+k uy)
a 4 ,4(p)
S kv btk )
Vo uy
R = —(h.
2 ,(0) (k)| uy. (A7)

We can expect that this pixel determined by the
LCDD can locate the edge of single pixel width
out of the ramp edge without employing an extra
thinning mechanism.

With respect to strictly increasing intervals, we
apply the strictly increasing edge detection (SIED)
procedure to detect and locate an edge pixel, which
is suspended at the end pixel pp of the line and
specified in the following pseudo code:

Procedure SIED:

1. While »,(p)>0 and p=+ p, with respect

to the wvalve »,(p) of DDGL from

successive scan pixel by pixel along the @

direction, do
1-1. Put 23 VP =0 and 1 kV = initially.
1-2. Calculate A=3 v,(p).

?

1-3. Count the scanned pixels to get the value
of k.

1-4. Add  v,(p)p and ku,(p) to DIVP
and >3KkV respectively to obtain their
new values.

2. When p,(p)<0 or p= p. (i e at the
end of the strictly increasing interval), if
42T,

2-1. Calculate (k.)= round[ > kV /41

22, write -2VE [ BV _ (5],
as an edge pixel.
With respect to strictly decreasing intervals, we

apply the strictly decreasing edge detection (SDED)
procedure, which is obtained simply by replacing

v,(p) with —w,(p) in the SIED procedure. In

order to construct the algorithm for detecting edge
pixels from scanning the whole of a single line in
the @ direction, we combine the SIED and SDED

procedures as the sub-procedures for the pixels with

ve(p)>0 and

with the bypassing procedure which produces no

v,(p)<0 respectively, together

output for the pixels with v,(p)=0. We then
obtain the edge pixels identified with the LCDD
from the SIED or SDED procedures as the output
of this algorithm for edge detection from single line
scan (EDSLS). This EDSLS algorithm with respect

to the line starting at p=p, and ending at

p=p, in the two dimensional image is simply
illustrated in the flow chart of [Fig. 1] We apply
the EDSLS algorithm to every linear sequence of
pixels in x or y direction to accomplish the
complete edge detection from the image. That is, a
complete edge detection algorithm of an image is
constructed by the integration of the EDSLS
algorithm over all the complete lines of both the

principal directions #=2x and y.
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v

p=p15 A=O

~

/Input vo( D)
ve(9)=0 v($)<0
Ug(p)>0
pP=p+ u,
* SIED SDED
No
b= DFr l‘f |
Yes 4=90
v
No

Yes

»
»

End

[Fig. 1] The EDSLS algorithm. The algorithm for detecting edge pixels along
the single line starting at p=p, and ending at p= pp.
(38 11 »=0»,0lM NESINH »=»,.00M Eli= & AME M2 0K HLS
2l&5k= EDSLS 212iE.

4. Applications speckle noise or isolated pixel noise. That is, the
isolated pixel noise deteriorates badly the strictly
monotonic behavior of substantial edge signals and
should be eliminated for the EDSLS algorithm not

to result in the false edge detection. In order to

Our edge detection algorithm is absolutely
dependent on the strictly monotonic behavior of

intensity change, which is very sensitive to the
reduce this speckle noise in practice, we can
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employ the median filter which is nonlinear but

preserve edge characteristics.

(d
[Fig. 2] (a) Original image and (b) its edge detection
with 7=30. The results of edge detection from (c)
median filtering by 3x3 neighborhood ( 7=30) and
(d) additional Gaussian smoothing with 7 pixel filter
size ( T7=15).

(D& 2] (2) & SN b)) 7=302 AEEH 1 X
2= (0 33 0IRQZ F ZHE XSS 20|
OIXIE 2E8t ZnRt (d) 312 7 TE |9
JIRAISt EHE B85l T= 158 AS8t 0K
&

We first illustrate the application of our algorithm
and the role of noise reduction techniques such as
median filtering or Gaussian smoothing via the 2-D
image in [Fig. 2] In the result [Fig. 2](b) for the
original image without preprocessing, we can notice
that there appear many speckle objects complicating
the detected edges or delincated by false edges with
T=30 in the criterion (CRE). The result [Fig.
2](c) represents the edges from the median filtering
with filter size of 3 pixels using 7=30 again.
With respect to the 2-D image in general, the
median filter with filter size A=2p+1 is applied
to the AxA neighborhood of each pixel to remove
the noise objects wide up to p pixel size.
Therefore, we have the single pixel (noise) objects
eliminated and obtain the pertinent detection of
edges for principal objects in [Fig. 2](c). When we
apply the Gaussian low pass filter to a sequence of
stepwise adjacent edges, the corresponding sequence
of strictly monotonic intensity intervals can be
smeared into a single interval of strictly monotonic
intensity if the filter size exceeds the distance
between edges far. Therefore, the Gaussian
smoothing may suppress some edges and should be
used restrictively in applying our edge detection
algorithm. In the result [Fig. 2](d) from Gaussian
smoothing with the filter size of 7 pixels, we can
find that some elaborate edges of [Fig. 2](c)
disappear even with T=15.

The other example of applying our edge detection
algorithm is presented for a industrial automation of
visual inspection. At the final stage of testing the
performance of image display appliances like
television or their parts like crystal oscillator, the

manufacturer usually carry out the visual inspection
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to compare the display states of a standard test
image relying on the tester’s bare eyes. A typical
standard test image is displayed at a good state in
[Fig. 3](a) and a bad state in [Fig. 3](c). This
visual inspection procedure can be done by the
computer vision technique, whose core operation is
the representation of the model of test image and
displayed test images. In order to represent the
images, we can employ a pertinent grid to resample
the edge pixels on. A relevant representation of the
model image can be described by the collection of
resmapled edge pixels on the grid. Since the test
image has the simple texture, we do not have to
perform the edge linking to obtain the complete
boundaries of the image or image segmentation and
thereby chain codes neither. Therefore, we suggest a
simple procedure of visual inspection comprised of

following steps:

Step 1) Acquisition and preprocessing of images.

Step 2) Edge detection.

Step 3) Resampling edge pixels on a grid into a
collection to represent the image.

Step 4) Comparison of the collections to estimate
the state of displayed image.

Since the texture of test image is coarse and
regular, we can employ the Gaussian low pass filter
as well as the median filter extensively, in applying
our edge detection algorithm. The results of edge
detection are presented in {Fig. 3](b) and [Fig. 3}(d)

under the same filtering conditions.

(d

{Fig. 3] (a) A good and (c) a bad displayed test
image, and their edge detections (b) and (d)
respectively by the Gaussian smoothing of 7 pixel
size and the median filtering of 15 pixel size with
T=15.

(32 3] (2) NE BAI0| F2 HAl AEIR} (b) 7 TY
(0l JIRAIOF EEQF 15 mAl 37(0| B2t EHE
HIHID 7=158 AIS8! 0Kl & (0 NE S0l
LIge FAl AEHQH (d) S8 ZH0IMC! OIK &=,
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5. Discussions

In order to verify the presence of edges, we only

have to investigate the ADDGL’s A ,(p) and

A (p) independently. Therefore, this algorithm

seems to have rtelative simplicity of calculation

compared to the wusual ones employing the
magnitude of gradient V G%+ G%, which include
the floating point operation for the calculation of

square toot. However, the operators & (p) and

& (p) are badly nonlocal, and cause another kind
of calculational expense to be estimated. Although
the use of median filter to reduce the false positive
or negative effect of isolated pixel noises can cause
some complexity compared to the linear filter such
as the uniform or Gaussian filter, the expensiveness
is not so bad at all for calculation if the filter
length is restricted to 3 pixels discarding the single
pixel noises only. The median filter is especially
effective in eliminating isolated pixel noises.
However, if we want to smooth the texture, we
may well use the Gaussian filter, or equivalently
replace v,(p) and v, (p) into the corresponding
Sobel gradient components in the definition of
A {(p) and & (p). The use of lincar smoothing
filter can improve the connectivity in edge linkage.

In using the ADDGL as the characteristic
attribute  of edge signal, the gradual change of
intensity over large area of a single surface, which
can be caused by the nonuniformity in scene
illumination, may be recognized as a false edge. In
order to prevent this false positive effect in
particular, we need the unsharp masking or
flat-fielding procedure before applying the edge
detector.
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