Program Translation from Conventional Programming
Source to Java Bytecode
(71€ Z2aYq ANFEA At violE F=29] W)

a1
2 H 2 Uy an

(Jeon-Geun Kang) (Haeng-Kon Kim)

ABSTRACT

Software reengineering is making various research for solutions against problem of maintain existing
systems. Reengineering has a meaning of development of software on exizting systems through the reverse
engineering anf forward engineering. Most of the important concepts used in reengineering is composition that
is restructuring of the existing objects. Is there a compiler that can compile a program written in a traditional
procedural language (like C or Pascal) and generate a Java bytecode, rather than an executable code that runs
only on the machine it was compiled (such as an a.out file on a Unix machine)? This type of compiler may
be very handy for today’s computing environment of heterogeneous networks. In this paper we present a
software system that does this job at the binary-to-binary level. It takes the compiled binary code of a
procedural language and translates it into Java bytecode. To do this, we first translate into an assembler code
called Jasmin [7] that is a human-readable representation of Java bytecode. Then the Jasmin assembler
converts it into real Java bytecode. The system is not a compiler because it does not start at the source
level. We believe this kind of translator is even more useful than a compiler because most of the executable
code that is available for sharing does not come with source programs. Of course, it works only if the
format of the executable binary code is known.

This translation process consists of three major stages: (1) analysis stage that identifies the language
constructs in the given binary code, (2) initialization stage where variables and objects are located, classified,
and initialized, and (3) mapping stage that maps the given binary code into a Jasmin assembler code that is
then converted to Java bytecode

g o

AZEgo] ATRL JIE 2P fARS BAG B HFA02 B A7vh 0%} AT Yok A
FHe 4T £3HE o)§3te] J1E A2He G ojsist A2 A2He ABL rsiE J)E Ax
Yolo) AHUESZRE Wad J15e 7ish AT S Folth & ERANE 7189 ZIAA dlol
o ool AtYA Hode T PHoz wold 9)w Al vlolE TE2 WA F Hoizllo]
del S e Axede] A2Ee AETh oF 93 WA PascalL o] o3 AyE slEe) x
239 Qo}E Jasmin o)ehs oJA¥E =z WA Welsm ASA 971 ZKsd Al wolE 2= e
Tasmin o38e)7} A4 Ad Z=z WA

* Z3Y O GAFENE AFEALRE ae =244 2002, 6. 22
** A3 T S EUsE AFEHARTAELEN ue AAE : 2002, 7. 20.

964 HEFFEHEEHTEE R 2002 8, Vol 3, No. 8, August

o Azde B rjEe] WNIET} WeAlE B 43 A5 volie) 2= Yaoz Adw. o v

quge A Foll HoldslZEdA Aol 7R Agshs BT ¥E AN INE BAsw 2718

S 39 223 3ol Hole] ZEE lemin ZE2Y djPae BASOE 74N

1. Introduction

For today’s enterprises, information integration is
one of the top priorities for business success.
There are many aspects in dealing with information
integration issues. For example, uniform object
modeling at a higher level, multi-tier architecture of
software components at the middle levels, and
reusable library APIs at a lower level, have all
been designed and developed for the purpose of
integrating information of different formats on
heterogeneous platforms. However, few have con-
sidered information integration at the lowest level %
executable binary code integration {3, 9]. Much of
the executable code existing within organizations
today is compiled from source programs written in
diverse programming languages. It would be very
desirable if these binary codes could be converted
into a platform neutral format so that they could be
executed on different machines. If this could be
done, a natural choice of a target format is Java
bytecode [6]. Java was born with the "write once,
execute everywhere” philosophy that typifies plat-
form independency [2, 10].

In this paper, we present a prototype of such a
translation system to translate the compiled binary
code of a procedural language into Java bytecode.
This Pascal-like procedural language, called
PASCAL-L [4] that we designed and developed
ourselves, includes the basic structures found in
many languages, including local and non-local
variables, constants, expressions, control statements,
input and output, and subprograms. The PASCAL-L
compiler, just like any other compiler, compiles a
PASCAL-L program and generates binary code for
execution on the PASCAL-L ‘“hardware” (ie. a
virtual machine).

The executable binary code is based on the
traditional register-memory architecture. That is, most
instructions of the executable code involve either
registers or memory addresses, or both. Because the
format of the PASCAL-L binary code is known (will
be explained later), we will be able to decode the
instructions, analyze them, and map them to Java
bytecode. To do this binary level conversion, the
process bridges the gap between traditional compilers
and Java bytecode, as shown in [Fig. 1] where our
work is the circle in shaded pattern.

PASCAL-L
compiler
for a speclal

Binary code run on the
speclal hardware

PASCAL-L

Java bytecode run
on any machine

[Fig. 1] Binary level code translation

Executable binary
PASCAL-L code

Language units

Mapping
Jasmin assembler code

Java bytecode

[Fig. 2] The overall translation process

The translation process is done in the three
modules. First, the binary code of the compiled
PASCAL-L program is analyzed to find program
units. Then these program units are mapped to

Program Translation from Conventional Programming Source to Java Bytecode 965

Jasmin assembler code according to some matching
patterns of the two. Finally, the Jasmin code is
converted to Java bytecode. The process is shown
in [Fig. 2]

Our work is focused on the first two modules:
code analysis and mapping. The Jasmin assembler,
developed by Jon Meyer and Troy Downing [7], is
publicly available software, which assembles Jasmin
assembly code into Java bytecode.

The code analysis module is the key part of the
process. It identifies various units in the program
code by discovering patterns of instructions.

The mapping module maps the program units
discovered into corresponding assembly code in
Jasmin, which is at a low level, with an almost
one-to-one correspondence with Java bytecode.

In this paper, we shall first briefly describe in
section 2 the specifications of the three language
forms, namely, the PASCAL-L binary code, Jasmin
assembly code, and Java bytecode. The code
analysis module is given in section 3 and the
mapping module is in section 4. We shall then give
some examples to illustrate the translation process
in section 5. Finally, we conclude the paper in
section 6 with a discussion of our findings.

2. Language Specifications

In order to translate the PASCAL-L binary code
to Java bytecode with Jasmin assembly code as an
intermediate bridging format, we will first need to
introduce the format of each of the three codes.
They are low-level language specifications.

2.1 Java Virtual Machine

Java virtnal machine (JVM) [6] was designed
with portability in mind. To achieve platform
independence, Java compilers generate Java byte-
code, which is designed to run on any platform as
long as a JVM is installed on the machine. Java

bytecode is platform neutral and interpreted by the
JVM. Programs written in languages other than Java
can also be compiled into Java bytecode and
executed on the JVM, if such compilers exist. Also,
one can directly program the JVM [1, 5, 8].

An implementation of a Java virtual machine is
called a Java runtime system, and it typically con-
sists of the following basic components: an execu-
tion engine, a memory manager that manages the
heap and garbage collection, an error and exception
manager, support for native method libraries, a
threads interface, a class loader, and a security ma-
nager. A runtime data area is also kept which
normally contains space for the program counter,
Java virtual machine stacks, the heap, a method
area, a runtime constant pool, and native method
stacks.

The Java virtual machine functions by loading
correctly formatted Java class files and executing
the bytecode they contain. The Java instruction set
has 160 instructions (can be extended to 256) for
various operations including method invocation, Java
data types include primitive types (byte, int, float,
char, double, etc.) and reference types (class,
interface, array, etc.). Each instruction may include
operands that are generally pushed on an operand
stack and then operated on by the opcode. For
example, the sequence of instructions

iload 4 J/ push int variable 4 on stack
iconst_3" J/ push constant 3 on stack

iadd // pop 2, add, push result on stack
ief J| convert stack top from int to float
fstore 5// pop stack top and store to float var 5
implements float var5 = (float) intVar4 + const3.

An L followed by the full class path denotes
class types. For example, Ljava/lang/String; de-
notes the String class in javalang. Array types use
the '[> character followed by the type descriptor of
the type of the array elements Here are some
examples:

966 BEAFEEERTEE R '2002. 8, Vol 3., No. 8, August

(D 1-D array of doubles
{ 2-D array of integers
[[Ljava/lang/String 3-D array of Strings.

Type descriptors of methods are of the format
(<argument_types>)<return_type>. For example,
(SFlUava/lang/Thread;)! represents a method
which takes arguments of type short, float, and
Thread[]; and returns an integer.

Another aspect of the JVM that is important to our
work is the class loader. It checks, among other
things, the internal structure of the class file to verify
the integrity of the class and the bytecodes it contains

2.2 Architecture and Instruction Set
of PASCAL-L

The PASCAL-L system is a virtual machine that
includes hardware architecture and an instruction set.
The similarity of the PASCAL-L virtual machine
and the Java Virtual Machine is that they share the
“virtual machine” in their names. But there is very
little else in common between the two. PASCAL-L
is a traditional machine with a set of 64 registers
and a memory of N words. The partition of the
user space in memory consists of executable
instryctions, a run-time stack, a literal pool where
constanis are stored, and a heap for dynamically
allocated data, as shown in [Fig. 3].

memor
registers
pc
display reg 1 executable code

display reg 2
display reg 3
stack top reg
heap base reg l

const base reg
..... Ny
femporary
regs T
l heap
constant literal
pool

[Fig. 3] PASCAL-L hardware architecture

We can see in [Fig. 3] that the registers are
further divided into three groups: a fixed ‘number of
display registers that are used as base registers of
variable areas on the run-time stack, a fixed number
of reserved registers for special purposes (such as
for program counter pc, the base and top of the
run-time stack, the base of the heap, etc.), and the
remaining as temporary registers used for any other
purposes, including to hold intermediate results of
expressions.

The PASCAL-L’s instruction set includes instruc-
tions for the five built-in types: integer, real,
boolean, char, and string. [Fig. 4] shows the format
of the 32-bit instructions.

opcode Tegister base offset
6 bits 6 bits 6 bits 14 bits

[Fig. 4] PASCAL-L instruction format

The 6-bit opcode field may be any of the
possible 64 instructions, such as arithmetic, branch,
memory-register data transfer, and other miscell-
aneous instructions. If an instruction references a
memory location, the (base, offset) pair often
represents the effective memory address, where base
is the base register containing the starting address
of a memory area and offset is the displacement
within the area. This addressing mode is particularly
useful for accessing values in various parts of the
memory. Instructions applied to data of different
types have different opcodes. For example, ADDI
and ADDR are arithmetic addition operations for
integer and real values, respectively. This infor-
mation is necessary for us when we try to identify
variables and their types from the binary code.

2.3 Jasmin Assembly Code

Jasmin is a freely available Java class file
assembler that takes ASCII descriptions of Java
classes written in a simple assembler-like syntax

Program Translation from Conventional Programming Source to Java Bytecode 967

using the JVM instruction set. It converts them into
binary Java class files.

Jasmin programs consist of three types of
statements: Jasmin-specific directives, instructions for
the Java virtual machine, and labels. Since most of
the Jasmin assembly instructions are pretty much
the same as the Java bytecode (in human-readable
format), we only describe here the directives and
Jasmin file structure. Jasmin directives (such as
.class, .method, .field, .var, etc.) may take
parameters, very much like bytecode instructions.
Class names are written using the full path with °/°
as the separator. Methods are represented using the
full path of the method name followed by the
descriptor as discussed before. For example, the
printin method of the PrintStream class is
represented as

javafio/PrintStreamyprintin(Ljava/lang/String:)V.

Field names are specified using two tokens. The
first provides the class and name of the field and
the second is its descriptor. For example, the
instruction

getstatic java/lang/System/out Ljava/io/
OutputStream

gets the static value of the object out of the
class java.lang.System, with type java.io.Qutput—
Stream.

A Jasmin file consists of the following parts: a
header, a list of field definitions, and a list of
method definitions. The header includes specific
information on the class being created, such as the
class file name, class name with access specifier
(public, final, super, interface, or abstract), and
the parent class. If the class is not extended from
another class, then the parent is the Object class,
java/lang/Object.

Following the header information is a list of
field definitions, if any. The field directive is used

and the format is:

field <access-spec> <field-name>
<descriptor> [= <value>]

Here <access spec> is zero or more of the
keywords: public, private, protected, static, final,
volatile, and transient. The <field-name> indi-
cates the name of the field and <descriptor>
refers to its type descriptor. The field may be
initialized with a constant value.

The remainder of a Jasmin file contains of a list
of method definitions. The basic format of all
methods is:

.method <access-spec> <method-spec>
<statements>
.end method

The access specifiers are zero or more of:
public, private, protected, static, final, syn-
chronized, native, and abstract. The <method-
spec> is the name of the method and its type
descriptor. <Statements> refers to the code contained
in the method.

3. Code Analysis

In order to achieve the translation of binary code
into Jasmin assembler code, it is necessary to
analyze each line of the binary code and discover
higher-level constructs. This is very much like
partial de-compilation - discovering program
structures from the binary code and re-constructing
them into a high-level representation.

The analysis stage involves rebuilding as
complete a picture as possible of the original
structure of the program. The main program must
be distinguished from any of its nested procedures,
all of which will be mapped into Java methods. A

complete symbol table must be reconstructed that

968 WEAREEEHELES R 2002, 8, Vol 3., No. 8, August

will represent all variables, the methods in which
they first appear, their scopes, and their types. All
literals, their types and their actual values must be
retrieved. Finally, information must be collected
about the branching structure of the program in
order to prepare for converting from machine code
branching instructions to the higher-level construct
of branch statements in combination with labels.

Because the compiled binary code of a PASCAL-L
program uses registers to point to the beginning of
areas in the memory, as shown in [Fig. 2], it is
necessary to pass the knowledge of which register is
used for which memory area to the code analysis stage.
This knowledge is wsed to infer the category of
information being accessed. For example, if we know
register 14 is the base register of the constant literal
pool, we will treat it differently from the case if
register 14 were the base of the temporary pool, which
would hold an intermediate result of an expression
being evaluated rather than a constant literal.

Once the preliminary information becomes avai-
lable, we can start to find and identify the program
structures in the binary code.

3.1 Discovery of Subprograms

PASCAL-L, like many other procedural langua-
ges, allows nested scopes with the traditional scope
rules applied. Variables in the main program (global
scope) will be mapped to class fields in Java.
Non-local (but not global) variables are also mapped
to class fields even some outer scopes may not
have access to them. This won’t create problems
because the PASCAL-L compiler would have
discovered the access violation if there were any
such violations.

In examining machine code in order to map the
PASCAL-L subprograms into Java methods, it’s
necessary to extract four crucial pieces of infor-
mation. First, the start and finish points of the
procedure in the machine code must be identified.
These are located by matching patterns of sequences

of the opcodes. Second, the procedures must be
categorized in a way that makes them distin-
guishable from one another since they no longer
retain the identifiers used to represent them before
compilation. Third, the instructions the procedures
contain must be marked as belonging to that
method. Finally, the procedure’s relationship with
the other procedures must be determined, so that a
picture of the original structure of the program can
be reconstructed.

One pass through the code is sufficient to meet
all of the above requirements. The machine code is
traversed sequentially with the opcodes inspected
until a pattern for entry into a procedure is located.
Because the procedure-entry code of all PASCAL-L
procedures share the same pattern that is before the
code of the first executable statement within the
procedure, we can identify them by matching the
pre-defined pattern. This procedure-entry code is for
pushing an activation record on the run-time stack,
save and set the display register, update the stack
top, etc. Similarly, we can match the procedure-exit
pattern when it returns to the caller. Some of the
patterns look like:

Pattern Name Code Pattern

StartMain LDA, ADDI, LDA, ST

Proc LDA, ADDI, ST, LD, ST, ST
ProcReturn LDA, LD, LD, B

ProcCall LDA, ADDI, LD, LDA, ST, B
ProgramEnd HALT

For subprograms with parameters, the procedure-
entry code pattern remains the same. The code for
parameter passing is at the place of the call rather
than as part of the procedure-entry code. There are
some differences in calls with or without para-
meters, but these differences (LD and ST instruc-
tions for copying value parameters and/or addresses
of reference parameters) appear before the code of
ProcCall and therefore do not affect the way the
subprogram’s starting and ending are matched.

Program Translation from Conventional Programming Source to Java Bytecode 969

Once the entry point of a subprogram is
identified, a new method object can be entered into
the method table, with a reference to its starting
location. Each method object will eventually contain
all of the information required to generate the
Jasmin code. Each instruction contained within the
procedure is then marked as belonging to that
method up until the exiting pattern of the procedure
is discovered. At that point, a reference to the
ending location can be entered into the method
table. Because the PASCAL-L code does not retain
identifiers of the subprograms, we simply assign a
unique number to each method. The methods are
then identified as methodn in the Jasmin code.

Since PASCAL-L is a Pascal-like language, in
which the subprograms are in the declaration portion
of an outer subprogram, the code of the outer scope
won't be generated until the code of all the nested
subprograms declared within it are generated. To
establish the nestingfenclosing relationships between
subprograms, we start with the scope 1. It is incre-
mented by 1 when a procedure-entry pattern is re-
cognized and decremented by 1 when a procedure-
exiting pattern is identified. There may be multiple
subprograms with the same scope (say scope n) in
a sequence. Once the end of the sequence is
reached, we know that these subprograms are nested
This pa-
ttern may repeat until the main program is reached
that has scope 1.

in the next subprogram of scope n - 1.

3.2 Discovery and Categorization of
Variables

After subprograms are found and matched to Java
methods, the next step is to locate the variables that
the JVM will refer to in the bytecode. The varia-
bles must be typed so that the appropriate typed
instructions can be used when they are referenced.

3.2.1. Locating and Identifying Variables

Variables can no longer be referenced by their
names because the names no longer exist in the
machine code. A variable is recognizable in the
machine code only as a reference to a (base, offset)
pair of values. The base indicates the scope of the
variable and the offset is the memory offset of the
variable in the activation record on the nmntime stack.

Unfortunately the (base, offset) pair is not unique
for every variable because multiple procedures may
have the same scope, and multiple variables within
these procedures could all be identified using the
same offsets.

Discriminating the procedure in which a particular
variable was declared is not as simple as locating
the first procedure in which that variable is
referenced. For instance, a variable may be declared
in the main program, but is not referenced within
the main program but within a nested procedure
instead. Thus, the variable has a scope 1 (that of
the main), but is used only in a procedure of
differing scope. This means that the first indication
of which procedure a variable belongs to is found
by comparing the scope of the variable with succe-
ssive outer methods until a match is found.

There are circumstances where many procedures
exist with a scope matching that of the variable,
and the variable was mpever referenced in its
declaring procedure. In this situation, we need to
reexamine the nesting hierarchy so that it’s possible
to determine which of the procedures with matching
scope is an outer procedure, either directly or
indirectly, of the procedure in which the variable
was referenced. An illustration is given in the
following PASCAL-L program.

program testScope;
procedure A{);
var y @ integer;
procedure B();
begin
y =5

{ main program, scope 1 }
{ procedure A, scope 2 }

{ procedure B, scope 3 }

{ variable vy, scope 2 }

970 EEWAFEELHEEE HREE °2002. 8, Vol. 3, No. 8, August

end:

begin
B();

end;

procedure P();
var X : integer;
procedure Q();

{ procedure P, scope 2 }

{ procedure Q, scope 3 }

begin
X =2 { variable x, scope 2 }
end;
begin
Qi)
end;

begin { main starts here, scope 1}

end.

The two procedures, A and P, both of scope 2,
each contain one nested procedure of scope 3, B
and Q. A and P each contain a variable declaration;
however, the variables are not accessed within A or
P, but instead within B and Q. At first glance, it’s
easy to see that the variable y belongs to procedure
A and the variable x belongs to procedure P. This
is not as clear when the machine code is examined.
The code pattern of both variable references would
be similar to the following:

procedure-entry code

LD R constant

ST R20 { var in scope 2, offset O }
procedure-exit code

To solve this problem of same (base, offset) of
variables, we trace the subprogram nesting hierarchy to
find instructions that reference the variables. Because
we know the methods these instructions belong to, we
will be able to identify the variable’s method.

Once a variable has been identified, a key is
formed for it and entered into a symbol table. The
key is made up of a combination of the variable’s
base, offset, and parent method number. The varia-
ble is given a numeric identifier, which the JVM
will use to reference it. The variables are numbered
on a per method basis, starting at 1, since O is
reserved for a reference to the class instance, this.

If method calls with parameters were to be created,
the parameters would be numbered first after the
reference to this, before the local variables.

3.2.2 Identifying Types of Variables

Every variable must be typed as required by the
JVM. Since all variable declarations in the
PASCAL-L program do not generate code, only the
references to the wvarjables in the executable
statements provide type information in the machine
code. Some of the PASCAL-L opcodes are typed,
such as ADDI and ADDR for integer and real
addition operation, respectively. We can use these
typed instructions to figure out the types of their
operands, and to extend these to data items in other

non-typed instructions, For example, if the code for

X-yis
LD R Basex Ofiselx
SUBI R Basey Offsety

we will know that the type of y is integer and
infer that the type of x is also integer. The type
would be float if the opcode of the subtract
instruction were SUBR. If one of the two variables
is integer and the other is float, the integer variable
would have been converted to float first using the
FLOAT instruction. Furthermore, we may be able
to infer the type of the operand of a non-typed ST
(for STORE) instruction if it is preceded by a
non-typed LD (for LOAD) instruction with an
operand of a known type. That is, if we have the
code sequence

LD R
ST R

Offselx
Offsety

Basex
Basey

and we know that the data item x is of type T,
then we can infer that the type of data item y is
also of type T. It is worthwhile to mention here
that the load and store instructions in Java

bytecode are typed to satisfy the strong typing

Program Translation from Conventional Programming Source to Java Bytecode 971

requirement of JVM. PASCAL-L’s LD and ST
instructions are type-less because they treat the data
items as a 32-bit bit pattern in a register or a
memory location, regardless of the interpretation of
the bit pattern.

Many other PASCAL-L instructions also provide
type information, such as READ and WRITE (RDI,
RDR, RDCH, WRI, WRR, etc.), as well as branch
instructions (BZI, BZR, etc.).

Of course, discovering types of variables may not
succeed if an opcode of an instruction cannot be
found that applies to the variable. In the above
LD-ST example, if we do not know the type of x,
we won’t be able to infer the type of y. If x = y
is the only statement in the program (which
generates the LD and ST instructions) referring to x
and y, there is no way we can recover their types.
It tuns out, though, this is not a problem at all,
we simply discard the code without determining
their types and no Jasmin code will be generated
for them. Omission of the code won’t have any
adverse effect on the results because x and y are
never used in the program. This exclusion can be
considered an optimization rather than a failure to
determine type.

3.3 Discovery of Constants

In addition to variables, we must also find and
categorize constant literals. They are provided in the
literal pool of the binary code and can be located
by their references in the instructions. These
references always use the literal pool register as the
base register, so it is straightforward to locate these
references. Once a constant literal is located, we use
the same approach as we did for variable types to
associate the constant with an appropriate type. All
constant literals are of primitive types, e.g. integer,
real, character, boolean, and string. Except for
strings, the other four types have fixed lengths so
that retrieving a value is just a matter of getting
the contents of the code at the particular address

plus the length.

Since the values are stored in integer format,
integer-type values are as the way they are stored.
For real-type items, their internal representation (bit
pattern written as an integer) is reinterpreted as a
real number. This can be done using a structure
like a unjon in the C or C++ language. In Java,
the method intBitsToFloat(lF in the package
java.lang.Float provides a similar functionality.

Character and boolean types are both stored in
the Java virtual machine as integers, and so no
effort is required to convert them. Strings, on the
other hand, are stored as the string characters
preceded by the length. The length is stored in a
single 32-bit word at the index that is used to
reference the string. Therefore, to get the value of a
string constant, we will read the length first, and
then extract the characters from the following words
to reconstruct the original string.

3.4 Locating Branches and Labels

The final step before the actual conversion of the
PASCAL-L program to Java is to find all branches
in the machine code and their target addresses that
will be labels in Jasmin. Branches (or jumps)
represent all control statements in PASCAL-L,
including selection, repetition, exit, continue, return,
etc. These branch instructions are identified in their

opcode, such as:

B unconditional jump to the target address
BZ branch if (R) = 0

BGZI branch if (R) > 0, integer

BGZR branch if (R) > 0, real

etc.

where R is the register used in the instruction. The
target address is specified in the branch instruction as
well, but most likely in the form of (base, offset)
rather than the direct physical address. These target
addresses will be mapped to labels in Jasmin.

A branch may jump forward or backward to the
destination. If it were a backward jump, the target

972 WEATEEXHELE R 2002, 8, Vol 3., No. 8, August

destination would be processed before the branch
instruction was encountered. When we reach the
branch instruction, a new label is created and
assigned to the destination that is known. If it is a
forward jump, the destination is unknown at this
time. So we record the address of the branch
instruction in a “label-to-be-resolved” list. When the
jump target is reached, we create a new label for
the destination and backtrack it to the jump
instruction found in the list.

3.5 Construction of Input and
Output Objects

One more issue remains before we can proceed
with code conversion — creating IO objects. The
Java language was designed to be secure and
platform independent. This independence means that
instructions that are platform dependent, such as
input and output, must be abstracted. For this
reason, there are no instructions in the Java virtual
machine instruction set for direct reading and
writing of data. Instead, all reading and writing
must be accomplished using the java.io and
java_lang packages. In contrast, the PASCAL-L
language provides opcodes for directly reading and
writing all of its primitive types: integer, real,
boolean, character, and character string.

In order to read and write utilizing the Java
packages, it’s necessary to create instantiations of
the required objects and reference the reading and
writing methods if the program actually involves
read and write. These decision can be made by
inspecting the opcodes to see if instructions like
RDI (read integer), WSTR (write string), etc. exist
in the code. We create the /O objects on a per
method basis when a read andfor write opcode is
found during the procedure-mapping phase.

There are a lot of details about creation and use
of I/O objects and their methods, such as format read
and write. Since they are not very critical to the
principle methodology of our code translation strategy,

we will not discuss these details any further.

4. Mapping PASCAL-L Code to
Jasmin Syntax

The next stage is to actually generate Jasmin
code. This is accomplished by pattern recognition
of all program constructs in the PASCAL-L code
and mapping the patterns to their Jasmin equiva-
lents. The program constructs fall into the following
five categories:

+ Main program, subprograms and calls
- Simple constructs

- Input and output operations

- Expressions

+ Control constructs

Before we map each of the program units to Jasmin,
we first need to create a class to represent the PASCAL-
L program. This step involves generating a class
definition, the <init>() method that is the instance intiali-
zation method for the class, and declaring any class
fields. A class that will be wsed to represent a PASCAL-
L program (or any other procedural language) will not
requite inberitance and can simply follow the default rule
and extend the javalang.Object class. Declaring the
fields is simply a matter of listing all of the fields found
in the symbol table with their initialization values. The
basic Jasmin syntax to depict classes that represent
PASCAL-L programs is given below:

.class public classname

.Super javaflang/Object

sinsert field list here, such as:

field public static field3 | = 0

sinstance initialization method

.method public <init>(V
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

; insert main method here

; insert any additional methods

Program Translation from Conventional Programming Source to Java Bytecode 973

Pattern Name TOpcode Pattern

Subprogram Patterns:

StartMain LDA, ADDI, LDA, ST

Proc LDA, ADD], ST, LD, ST, ST
ProcCall LDA, ADDI, LD, LDA, ST, B
ProgramEnd HALT

Simple Construet Patterns:

Load LD
Store ST
Assign LD, ST

Input and Output Patterns:

Pattern 1: LDA, WI-WSTR

Wilte Pattern 2: WLN

Read Pattern 1: LDA, RDI-RSTR
Pattern 2: RDLN

FormatDecimal LD into width register

MakeWidth LD into width register + 1

Expression Patterns:

Pattem 1: LD, ADDEI-DIVR, ST

EvalExpr Pattern 2: ADDI-DIVR, ST

Pattern 3: ADDI-DIVR
TypeConversion Pattern 1: LD, INT or FLOAT

Pattern 2: LD, INT or FLOAT, ST
EvalUnary Pattern 1: NEGI or NEGR

Pattern 2: NEGI or NEGR, ST
EvalUnaryNot LD, BZ, ST, B, ST

EvalBoolWithoutLoad | BZ-BNLZR, ST, B, ST

EvalBoolWithLoad | LD, BZ-BNLZR, ST, B, ST

Pattern 1: BZ, LD, BZ, B, ST, B, ST
EvalBoolAnd Pattern 2: LD, BZ, LD, BZ, B, ST, B, ST
e alBoalor Pattern 1: BNZ, LD, BNZ, ST, B, ST

Pattern 2: LD, BNZ, LD, BNZ, ST, B, ST
Control Statement Patterns:

If LD, BZ

For-Loop LD, SUBI, BGZI or BLZI

SimpleLoop B
[Fig. 5] Opcode patterns for program constructs

Pattern matching identifies the program units. The
patterns for each of the five categories are listed in
[Fig. 5.

In examining the patterns, it becomes apparent
that many are very similar, with the only difference
being a leading load, LD, or a tailing store, ST.
This is due to the very nature of the machine code
created by the PASCAL-L compiler. In many cases,

values may be left in a register at the end of an
operation and no leading load instruction is
necessary before the next operation commences.
Similarly, the lack of a store instruction at the end
of a pattern indicates a case where the result was
left in the register rather than stored.

The basic process of mapping these opcode
patterns into Jasmin syntax involves abstracting their
function into a higher-level construct wherever
possible. This means that references to registers and
memory locations must be translated into references
to local wvariables, fields, and literals. Branch
opcodes will become Java branching instructions
referencing labels placed in the code. Sets of
opcodes will be transformed into higher-level
selection and repetition constructs or methods. This
disassembly stage completes when all opcodes have
been mapped to Jasmin syntax.

4,1 Mapping Subprograms

The PASCAL-L main program maps into the Java
method public static main{[Ljava.lang. String:)V
and a subprogram maps into anonymous methods as
methodn, where n is the index of that method in the
methods table, similar to the naming convention used
for class fields. For instance, a method at index 3
will have the signature public static method3(V.
In addition, the number of local variables and
maximum operand stack size are calculated based on
the information in the symbol table. The bytecode
verifier of the JVM will use these values. The shell
of a method in Jasmin is like this:

.method public static method3()V

limit stack 2

limit locals 5

; insert input/output object creation here
; insert local variable initialization here

; insert body statements here

return

.end method

974 HERATFEHEXEHFTEE HE 2002, 8, Vol 3., No. 8, August

The statements in the body of the method are
then mapped to corresponding Jasmin code, as
discussed in the following sections.

During processing of body statements of methods,
patterns for procedures calls may be encountered,
consisting of the opcode pattern LDA, ADDI, LD,
LDA, ST, and B, which represent the instructions
necessary to push the procedure’s activation record
on the runtime stack, set it’s return address, and
jump to the procedure. This sequence of events
requires the generation of a single line of Java
assembly code to invoke the method and accomplish
the same effect. Again, the manipulation of registers
and the runtime stack is not seen at this level of
abstraction. The invokestatic instruction is used to
invoke static methods, and so the syntax for
invoking the method from the previous example
would be invokestatic classname/method3(\V.

4.2 Mapping Simple Constructs

Simple program constructs are load and store
instructions that move data from memory to register,
or from register to memory. They occur very often
in the PASCAL-L binary code, particularly for
expression evaluations and assignment statements.
In Java bytecode, however, the load and store
instructions are applied to the operand stack and
variables. The types of the variables and constants
we exiracted from the PASCAL-L code, as we
discussed in section 3.2.2 and 3.3, are used to
generate Jasmin (and hence JVM) instructions that
are typed (such as iload for loading integer, dload
for loading double, etc.). For example, the
assignment statement X = y - 3.5 would be
compiled to PASCAL-L code as the follows,
assuming x and y are of type real:

LD R Basey Offsety
SUBR R Baseiterar-poo Offsetss
ST R Basex Offsety

The corresponding Jasmin and Java code would be

fload 4

lde 35 // load constant from constant poo!
fsub

fstore 3

where 3 and 4 are variable ids for x and y.

One issue that needs special consideration is the
handling of temporaries in the PASCAL-L code.
They are registers holding intermediate values during
the evaluation process of expressions. Since a tem-
porary may hold an integer value at one time and a
float value at another during execution, we cannot
attach a fixed type with the temporary. One solution
would be to simply keep the temporary on the
operand stack just like any other data item until it
is used. We need to keep track of the type of the
temporary when it is used in different cases and
maintain the accurate count of the stack size, so
that the Java bytecode verifier will not raise an
exception. Another way to handle this is to create a
local variable for the temporary and push that
variable on the stack: That variable will be treated
as other variables so that the type of the variable
and the maximum stack size will be fixed. To
accomplish this, we can use arrays, one array per
type, to hold the variable ids. When the temporary
is encountered, we go to the array according to the
temporary’s type and assign an id of a variable to
be used in place of the temporary.

4.3 Mapping Input and
Output Instructions

In the JVM, the actual physical implementation
of the host machine and its input and output
capabilities are abstracted. As a security measure
and to support cross-platform operability, the JVM
does not allow operations that directly read and
write to standard input and standard output. These
must instead be performed using the facilities
provided by the java.io package. Due to the much

Program Translation from Conventional Programming Source to Java Bytecode 975

higher level of abstraction, input and output
statements will require a significant effort to achieve
an equivalent mapping. A PASCAL-L write state-
ment is of the form WRITE(<output-list>) that is
compiled into a sequence of (LDA, WR) instruction
pairs, each of which writes one value in the
<output-list>. For example, the WRITE("x = “, Xx)
will generate the following code:

LDA R Baseieral-pool offsety = -
WSTR 0 R 0

LDA R Basex Offsetx

Wi 0 R 0

In contrast, to output the same list of values in
Java will involve the following steps:

Construct and push on the operand stack a
java.io.PrintStream object that will be used for
the actual writing of the values.

1) Construct a java.lang.StringBuffer object
that will hold the string representation of all
the items in the <output-list>.

2) Each value in the <out-list> is converted
into a java.lang.String object and added to
the StringBuffer object.

3) Once all the values have been added to
StringBuffer, its toString() method is
invoked and the complete string is left on the
operand stack top.

4) Finally the PrintStream object is responsible
for writing the string.

Rather than creating the PrintStream, String—
Buffer, and String objects every time an output
statement is mapped, we create these objects on a
per method basis at the procedure-method mapping
time that are treated as local variables.

Another complication is the formatted output that
involves the width specification for the value to be
written and the width of decimals for real numbers.
We will not discuss the details of handling this
issue because it is not very important to this paper.

4.4 Mapping Expressions

PASCAL-L code of arithmetic and boolean
expressions contain specific patterns that can be
mapped. Because an expression can be defined
recursively like this: a primitive item (constant,
field, local variable, etc.) is an expression; if el
and e2 are expressions, el op e2 is also an
expression where op is a binary operator, so is
(e1). Hence, we will not need to consider the
complicated inner structures of el and e2; rather,
they are just treated as simple values. An example
of converting such an expression was given in
section 4.1. Here we omitted unary operators that
are quite trivial to handle anyway.

Boolean expressions are treated quite differently
with a sequence of opcode resulting in 1 or O (true
The PASCAL-L code for j < k, for

example, would look like:

or false).

LD R Baseg; Offset;
SUBI R Basex Offset«
BLZI R 0 pc + 3
ST ZeroReg Baseemp Offsetiemp
B 0 0 pc + 2
ST OneReg Basetemp Offsettemp

This code will leave the result (1 or 0) in a
temporary register. Similarly, other comparison
operators will have an identical code pattern except
that BLZI is replaced by another appropriate
opcode, such as BZ, BGZI, etc. For each of these
code patterns, we can convert it to Jasmin accor-
ding to the mappings shown in [Fig. 6].

Using this mapping, the above PASCAL-L code for
j < k will be converted to the following Jasmin code:

; assume | is variable number 5
; assume k is variable number 6

iload 5

iload 6

isub ; arithmetic expression | — k
ifit labelt ; 9o 1o label 1 if less than O
iconst_0

istore 7 ; store O for false

976 WBERFTEEZHFEEE HLEE '2002. 8, Vol 3., No. 8, August

goto label2 ; expression done
label1:
iconst_1
istore 7 ; store 1 for true
label2:
PASCAL-L opcode Java Bytecode
BZ ifeq label
fconst_0
BZ ifempl
ifeq label
BNZ ifne label
fconst_0
BNZ ifempl
ifne label
BGZI ifgt label
fconst_0
BGZR ifcmpl
ifgt label
BNGZI ifle label
feonst_0
BNGZR ifcmpl
ifle labe}
BLZI iflt label
fconst_0
BLZR ifcmpl
iflt label
BNLZI ifge label
fconst_0
BNLZR ifcmpl
ifge label
[Fig. 6] Branch Correspondence of PASCAL-L

and Java

4.5 Mapping Control Statement
Patterns

Once the boolean expressions are stripped out
from the PASCAL-L code, the remaining code for
control statements are just a bunch of branch
instructions. Here we just show the code patterns of
the if-statement and the for-loop-statement, in both
PASCAL-L and in Java.

The if-statement in PASCAL-L is pretty much
similar to that in many procedural languages. It
has the optional else-part and each of the then-part
and the else-part may be any statement including a

nested if statement. The complied code would look
like this:

Code for eval bool_expr1, result in a temp

LD R Baseiemp Offsetemp

BZ R 0 Eval bool_expr2
Code for statement_list;

B 0 0 jump_out_location
Code for eval bool_expr2, result in a temp
LD R Basetemp Oﬂsettemp

BZ R 0 Eval bool_expr3
Code for statement_list

B 0 0 jump_out_location

Code for statement_listn+
jump_out_location:

It is clear from this example that the control
statements would only concern the values of the
boolean
statements with some

expressions involved in the control

branch instructions to
accomplish the intended control. The Jasmin code
for the same structure is shown below.

; insert boolean expression 1 here
labell:
iload 0
ifeq labei2
; insert statement list 1 here
goto label3 ; jump out
label2:
; insert boolean expression 2 here
label5:
jload 0
ifeq label6
; insert statement list 2 here
goto label3 ; jump out
label6:
; insert statement list 3 here

label3: ; out location

A for-loop statement involves a control variable
with an initial value and a boolean expression as the
loop termination condition. The PASCAL-L code
pattern for its for-loop statement is LD, SUBI, BGZI
or BLZI, which is recognized during the analysis
stage. This translates to a simplified binary arithmetic
expression with no storing of the result followed by

Program Translation from Conventional Programming Source to Java Bytecode 977

one of two possible branching statements, iflt or ifgt.
The tail of the for-loop would contain an increment
or decrement of the control variable, followed by a
single branch statement to route flow back to the
beginning of the loop. The Jasmin code would be
similar the following:

labeld:
itoad 7
iload 8
isub
iflt (or ifgt) labels
; for-loop body statements here
; inc or dec loop counter, say, by 1
iload6
iconst_1
iadd
; branch back to the beginning of loop
goto labeld
label5:

Other control statements like while-loop and
switch/case-statements are handled in a similar way.

5. Assembly Jasmin to Java Bytecode

Once all of the PASCAL-L instructions have
been mapped and the complete Jasmin code has
been generated for all of the methods, the final
stage of assembly can commence. Methods where
an exception was thrown must have a pop statement
added to the end. Then all methods must have a
return statement added to indicate to the Java
virtual machine that it should retum from the
method call. An .end Jasmin directive is then
added to indicate end of the method to the Jasmin
assembler. Finally, all sections of code thus far
generated must be assembled to form a complete
Java class.

The class name provided by the user is utilized in
the class declaration. In addition to declaring the
class, code to represent the <init> method of the
class must be generated. There is no concept of a
constructor method in the PASCAL-L, so no

additional constructor methods must be generated. The
<init> method will remain constant for all classes.
Field declarations and initializations must be assem-
bled and added to the class. Finally, all methods will
be inserted into the class, starting with the main
method. The final Jasmin code created will appear
like the one shown in the beginning of section 4.

The complete Jasmin code is saved in a file with
suffix .j required by the Jasmin assembler that
generates the corresponding Java bytecode. We want
to emphasize here that the Jasmin assembly code is
very much like Java bytecode. In fact, all
instructions in Jasmin assembly code are identical to
Java bytecode. The main job of the Jasmin assembler
is in converting the human-readable Java bytecode to
binary Java bytecode for execution by a JVM.

6. Experimental Results

We tested a wide range of PASCAL-L programs
that include language structures like
arithmetic and boolean expressions, assignments,

various

control statements, read and write with format, and
subprograms. Because the purpose of our testing
was to make sure each step of the translation is
done in the correct way, we developed a graphical
user-interface to allow the user to go through the
stages one at a time, including reading the file that
contains the PASCAL-L machine code, locating
variables, starting analysis, and writing the Jasmin
code to a file. At the end of each stage, the user
can scroll up and down the display area to inspect
the intermediate output. We show below a simple
example that illustrates the translation process. The
original PASCAL-L program is

program proctest;
var i, , k, t : integer;
procedure Sort;

begin
writein('Inside procedure Sort: ', i, |, k);
if i > j then

978 BERAFEHEEHNFTEE HEE "2002. 8, Vol. 3, No. 8, August

t=hi=jhj=t
elsif k < i then
t=k k=ii=%
elsif k < j then
t=k k=jj=t
fi;
writeln('The result after sorting is: ', i, j, k)
end;
begin
writeln('Enter three integers : ');
readini, j, k)
writein('Before calling procedure Sort : ', i, j, kk
Sort;
writeln('After calling procedure Sort : ', i, j, k)
end.

The translation process starts with the compiled

code generated by the PASCAL-L compiler that is
partially shown in [Fig. 7] when the “Read File”
button is clicked.
The next step is to identify variables, constants,
labels, and methods. [Fig. 8] shows the variable
keys and labels found in the code. The summary
is shown in [Fig. 9}

[Fig. 7] Partial code generated by the
PASCAL-L compiler

[Fig. 8] Variable keys and labels identified.

[Fig. 9] Extracted information about methods

[Fig. 10] Jasmin code for a method

[Fig. 11] Partial bytecode of the if statement

Note that method 0 and some of the variables in
[Fig. 9] are not in the original PASCAL-L program
but they are default values in the Jasmin code.

Then, PASCAL-L-Jasmin mapping is done by
identifying the code pattems of the program
structures and converting them to their Jasmin
equivalent. The beginning of method2 is shown in
[Fig. 10] and the portion of the bytecode for the
if-statement is shown in [Fig. 11] After the Jasmin
code is generated, the Jasmin assembler converts it
into Java bytecode by the command

jasmin proctest

Program Translation from Conventional Programming Source to Java Bytecode 979

The result is in a class file named proctest.class.
Now, we can run the code just like running any
Java program, illustrated in [Fig. 11] (on NT) and
[Fig. 12] (on Solaris). It is clear that the translation
did achieve its goal of making the PASCAL-L
program "platform-independent.”

:\798\i 1 T>java proctest
Erter three integers :
12 43

Before calling procedure Sort @ 76 12 43
[lnside procedure Sort : 76 12 43

fThe result after sorting is 1 12 43 76
Wter calling procedure Sort : 12 43 76

£ :\298\hi11>

s

[Fig. 11] Running the converted bytecode on NT

Before calling procedure Sort : 328 78 159
Inside procedure Sort : 328 78 159

The result after sorting is : 78 159 328
After calling procedure Sort : 78 159 328
{pitrs il

|

[Fig. 121 Running the converted bytecode on Solaris

We have tested over 30 PASCAL-L programs of
all the features we discussed in the paper. All these
programs worked out correctly with JVM. We are
confident that the translation process is successful in
meeting the following criteria:

(1) The analysis stage completes successfully
with all variables and constants discovered
and typed, except in cases where a failure to
locate and type a variable or constant will
not affect the outcome of the program.

(2) The pattern mapping stage finishes succe-
ssfully with no sections of machine code left
unmatched.

(3) The Jasmin assembler assembles the result of
the mapping into a Java class file with no
syntax errors discovered.

(4) The Java bytecode verifier finds no incon-
sistencies in the generated class file.

(5) The program runs in the JVM and produces
results equivalent to the results of the original
CMPU program.

Even though the example shown is quite simple,
it still provides a glimpse into the challenges that
will be faced by anyone translating architecture-
dependent programs into Java programs.

7. Conclusion and Discussion

A binary-to-binary translation system is presented
in the paper. Although it is for translating the
binary code of the particular language PASCAL-L,
the concept and methodology are quite general and
may applied to other procedural languages. The
assumption is that we do have the knowledge of
the internal format of the machine code. This
assumption is quite natural because the machine
code is the input to the translation process.

The very basic idea of the translation process is
the analysis of the code patterns to identify the
language structures, particularly variables and sub-
programs. Since the machine code does not include
the identifiers of the items (variables, subprogram
names, named constants, type names, etc.), they can
be recognized only through the opcodes. Fortunately
the code patterns of different program structures are
different, although some share sub-patterns. This
may also be the case for the code patterns of many
of the procedural languages.

While many differences exist between a source
language and Java, it is possible to map the
machine code of the source language into Java
bytecodes that fully comply with the requirements
of the Java virtual machine with little loss of
accuracy. In doing so, a non-object-oriented program
becomes a completely object-oriented program. A
platform-dependent program becomes platform inde-

980 HHRAFHEEHESE HE 2002, 8, Vol. 3, No. 8, August

pendent with all register and memory references
removed and replaced with an absiract stack
representation. It is our belief that this type of soft-
ware will play an important role in system inte-
gration by filling the void of integration at the
binary level.

We are currently working on enhancements of
the system so that is could be incorporated in the
original compiler with optimization.

% References

[1] Joshua Engel, “Programming for the Java
Virtual Machine,” Addison Wesley Longman,
Inc., 1999.

[2] James Gosling, Bill Joy, Guy Steele, Gilad
Bracha, “The Java Language Specification,” 2nd
Edition, Addison Wesley Longman, Inc., 2000.

[31 Michael Gschwind, Erik Altman, Sumedh
Sathaya, Paul Ledak, David Appenzeller,
“Dynamic and Transparent Binary Translation
Computer,” IEEE Computer Society, Vol. 33,
No. 3, 2000, pp. 54-59.

[4] Gongzhu Hu, “Theory and Practice of
Compiler Construction,” CMU Printing Ser-
vices, 2000.

[5] Qiaoyun Li, “Java Virtual Machine - Present
and Near Future.” Proceedings of TOOLS-
26’98, IEEE, August 3-7, 1998.

[6] Tim Lindholm, Frank Yellin, “The Java Virtual
Machine Specification,” 2nd Edition, Addison
Wesley Longman, Inc., 1999.

[71 Jon Meyer, Troy Downing, “Java Virtual
Machine,” O’Reilly and Associates, Inc., 1997.

[8] Bill Venners, “Inside the Java 2 Virtual Mach-
ine,” The McGraw-Hill Companies, Inc., 1999,

[9]1 Cindy Zheng, Carol Thompson, "PA-RISC to IA-
64: Transparent Execution, No Recompilation
Binary Translation,” Computer, IEEE Computer
Society, Vol. 33, No. 3, 2000, pp. 47-52.

[10] JavaTM 2 SDK, Standard Edition Documen-
tation, Sun Microsystems, Inc., 2000,
hitp://java.sun.com/products/jdk/1.2/docs/
index.html

A2

19774 St AA-Ess
EAFID

1985 gFistn ojstel
AAA R EQ(FEAHAD

19979 W7HE gt
el HAA s 9
(o]&harAh

1979'd -1985'd :
A G3AL ARAEA

1985\ - @A) J3ARA g
HAFEHAESR a5

TR}« HlolEju o],

AFA5, LZEHATGL

1985\ ZQlohgtw
| AR SA(FEAD
19879 Fgista ojghed
ARA R EQ(F D
#1991 FJoisha ojgkdd
| AANES 2AF D
1978 ~1979\d
u) 3F95x APATd
1987 ~ 1989
AT&T Y 474
2000.12~2001. &A=}
u] Central Michigan
University w$kul<:
1990~ @A 7HEgistn
AFHTAF Fus
TR}
ARG Al A,
AREAL QIE H o] X,
AXEY O] A3,
FrABS A58t E, CASE,
AZEdo] HAHIE I

