Journal of the Korea Computer Industry Society (한국컴퓨터산업학회논문지)
- Volume 3 Issue 5
- /
- Pages.575-584
- /
- 2002
- /
- 1229-9650(pISSN)
A Study on Binarization of Handwritten Character Image
필기체 문자 영상의 이진화에 관한 연구
Abstract
On-line handwritten character recognition be achieved successful results since effectively neural networks divided the letter which is the time ordering of strokes and stroke position. But off-line handwritten character recognition is in difficulty of incomplete preprocessing because has not information of motion or time and has frequently overlap of the letter and many noise occurrence. consequently off-line handwritten character recognition needs study of various methods. This paper apply watershed algorithm to preprocessing for off-line handwritten hangul character recognition. This paper presents effective method in four steps in watershed algorithm as consider execution time of watershed algorithm and quality of result image. As apply watershed algorithm with effective structure to preprocessing, can get to the good result of image enhancement and binarization. In this experiment, this paper is estimate the previous method with this paper method for execution time and quality in image. Average execution time on the previous method is 2.16 second and Average execution time on this paper method is 1.72 second. While this paper method is remove noise effectively with overlap stroke, the previous method does not seem to be remove noise effectively with overlap stroke.
온라인 필기체 문자 인식은 필기의 순서와 획의 위치를 알 수 있어 신경망을 이용한 자소의 효과적인 분할로 큰 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 동적인 정보와 시간적인 정보를 가지고 있지 않고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 불완전한 전처리를 수행하여야 하는 어려움을 가지고 있다. 따라서 오프라인 필기체 문자 인식은 다양한 방법의 연구가 필요하다. 본 논문에서는 Watershed 알고리즘을 오프라인 필기체 한글 문자 인식 전처리에 적용하였다. 여기서 Watershed 알고리즘의 수행 시간과 결과 영상의 품질을 고려해 Watershed 알고리즘 4단계에서 효과적인 적용방법을 제시하였다. 효과적으로 구성된 Watershed 알고리즘을 전처리에 적용함으로써 영상 향상과 이진화에 좋은 결과를 얻었다. 실험에서는 기존의 방법과 본 논문 방법을 수행 시간과 품질로써 평가했다. 실험 결과 기존의 방법은 평균 2.08초, 본 논문 방법은 평균 0.86초의 수행 시간이 걸렸다. 결과 영상의 품질은 본 논문 방법이 기존의 방법에 비하여 문자의 획 사이의 잡영을 효과적으로 처리하였다.
Keywords