오존에 노출된 덩굴식물류, 쇠뜨기, 쑥의 광색소 함량과 SOD 활성 변화

Photosynthetic Pigment Concentrations and Changes of SOD Activities on Liana, Equisetum Arvense and Artemisia Princeps Exposured to Ozone

  • 발행 : 2002.09.01

초록

덩굴식물 개머루, 계요등, 까마귀머루, 담쟁이덩굴, 댕댕이덩굴, 인동덩굴, 하늘타리 등 7수종과 덩굴식물이 아닌 쇠뜨기, 쑥 등 2수종을 이용하여 광색소 함량과 SOD활성에 대하여 분석한 결과는 다음과 같다. 100 ppb 처리구에서 볼 때 엽록소 a, 엽록소 b, 총 엽록소 함량, 카로테노이드에서 담쟁이덩굴이 가장 많이 증가하였으며, 엽록소 b와 a의 비에서는 쇠뜨기, 카로테노이드와 총 엽록소의 비에서는 계요 등에서 가장 많이 증가하였다. 덩굴식물과 덩굴식물이 아닌 쇠뜨기, 쑥의 비교에서는 엽록소 b와 엽록소 a의 비에서 확실한 차이를 보였다. 엽록소 a와 b의 비에서보면 엽록소 b보다 엽록소 a가 더 민감한 차이를 보였으며, 수종에서는 담쟁이덩굴, 덩굴식물과 덩굴식물이 아닌 쇠뜨기, 쑥의 비교에서는 덩굴식물이 민감한 것으로 나타났다. SOD 활성에서는 100 ppb 처리구에서 덩굴식물류 7수종과 쇠뜨기, 쑥의 처리전과 처리후의 차이는 쑥에서 3535.7 unit/g로 매우 크게 증가하였으며, 계요 등이 109.3 unit/g로 가장 적게 증가하였고, 개머루 한 수종에서 131.7 unit/g로 감소했다.

This study was analyzed to photosynthetic pigment concentrations and changes of SOD activities on seven species of liana of A. heterophylla, P. scandens, V. thunbergii, P. tricuspidata, C. trilobus, L. japonica and T. kirilowii, and two species of E. arvense and A. princeps of non climbing plants. Concentrations of chlorophyll a and b, total chlorophylls and total carotenoids of P. tricuspidata in 100 ppb ozone site were the most increased. It was the most increased to P. scandens in ratio of chlorophylls and carotenoids, and E. arvense in ratio of chlorophyll a and b. There was difference to ratio of chlorophyll a and b of liana and non liana. At ratio of chlorophyll a and b of 100 ppb ozone site and the control it was more sensitive to chlorophyll a than chlorophyll b, and P. tricuspidata was the most sensitive at comparing with species, and it was more sensitive to liana than non liana. In SOD activities A. princeps was the most increased to 3535.7 unit/g, and P. scandens was the fewest increased to 109.3 unit/g, and A. heterophylla was only decreased to 131.7 unit/g in comparing to 100 ppb ozone sites and the control.

키워드

참고문헌

  1. Asad. K.M. Takahashi and M. Nagate, 1974: Assay and inhibitors of spinach superoxide dismutase. Agricultural and Biological Chemistry, 38, 471-473.
  2. Asada, K., 1999: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Analytical Biochemistry, 44, 276-287.
  3. Bache, B.W., 1980: The acidification of soil. Plenum Press, New York and London. 202p.
  4. Freedman, B., 1989: Environmental Ecology. Academic Press, Inc. San Diego. 424p.
  5. Han, S.H., 2000: Tolerance of Populus species to heavy metals in contaminated soils and changes in CD tolerance by mycorrhizal inoculation with Pisolithus tinctorius. Ph.D. Thesis, Seoul National University, 152p.
  6. Heath, R.L., 1980: Initial events in injury to plants by air pollutants. Annual Review of Plants Physiology, 31, 395-431.
  7. Hiscox, J.D. and G.F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal Botany. 57, 1332-1334.
  8. Huttunen, S. and E. Heiska, 1988: Superoxide dismutase (SOD) activity in scots pine(Pinus sylvestris L.) and Norway spruce(Picea abies L. Karst) needles in northem Finland. Eur. J. For. Path. 18, 343-350.
  9. Kim, J.K., 1992: Study on Herbs Vegetation in the Vicinity of Onsan Industrial Complex. Korean J. Ecology. 15(3), 247-255.
  10. Kim, J.P., C.K. Hahn, and J. Jung, 1991: Induction of antioxygenic enzymes as defence systems in plant cells against low temperature stress: (I) Accumulation of pyruvate in cells during post-chilling period. J. Korean Agric. Chem. Soc. 34, 162-167.
  11. Lee, J.C., J.M. Skelly, K.C. Steiner, J.W. Zhang and J.E. Savage, 1999: Foliar response of black cherry(Pruns serotina) clones to ambient ozone exposure in central Pennsylvania. Environment Pollution, 105, 325-331.
  12. Lee, J.C., K.C. Steiner, J.W. Zhang, and J.M. Skelly, 2002: Heritability of Ozone Sensitivity in Open-Pollinated Families of Black Cherry(Prunus serotina Ehrh.). Forest Science, 48, 111-117.
  13. Lidon, F.C. and F.C. Henripues, 1993: Oxygen metabolism in higher plant chloroplasts. Photosynthetica, 29, 249-279.
  14. Lichtenthaler, H.K., 1987: Cholrophylls and carotenoids : pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.
  15. Paakkonen, E., J. Vahala, T. Holopaninen, R. Karjalainen and L. Karenlampi, 1996: Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch(Betula pendula Roth.) saplings exposed to low concentrations of ozone. Tree Physiology, 16, 597-605.
  16. Park, Y.G., Sul, I.W., Kim, H.Y., Chung, I.K. and Shin, D.I., 1998: Changes in SOD Activity and Expression of SOD Gene in Two Hybrid Poplars Exposed to Shortterm Ozone Treatment. Korean J. Breed, 30(1), 36-41.
  17. Seb Gupta, A., R.G. Alscher and D. McCune, 1991: Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiology, 96, 650-655.
  18. Sheng, Y., G.K. Podila and D.F. Karnosky, 1997: Dufferences in $O_3$-induced superoxide dismutase and glutathione antioxidant expression in $O_3$ tolerant and sensitive trembling aspen(Populus tremuloides Michx.) clones. Forest Genetics, 80, 45-52.
  19. Skarby L., E. Troeng and C.A. Bostrom, 1987: Ozone uptake and effedts on transpiration, net photosynthesis, and dark respiration in Scotch pine. Forest Science, 33, 801-808.