BESHAE FE3 /MY olgd IF ZZES
A Certification Protocol based on Broadcast Invalidation Approach

z 4 & I

Sung-Ho Cho Min-Goo Kang

2 ¢
SR 524 Alo] JPHe A BEEo) WS NPT A RL olg3te] oleld BHES B8 Y 4+ A
o oREe A Je THE A2EAT §A487) 9 A Gl stk o] ERIAE MREALY Y
Flke T2 AME 7PEE 1R Cltn Belt o) JPge dm Ak E FA] A% LMIE glol 3
82 ST A5UAE Fole] Srk AQSIE Mol BE& BAglE AL FATE AL BelET Wk o)
sk, BS9} TSRO AQISHE TPgel $43 A% S Ueiths 2 Rat:

Abstract

The performance of OCC is very sensitive fo the fransaction dbort rate. Even if the abort probability can be reduced by
re-ordering, most of re-ordering schemes have space overhead in maintaining a graph or histories. In this paper, we proposed an
efficilent re-ordering scheme based on a broadeast invalidation mechanism. Our scheme. called CBl, can reduce the dbort
probability without space overhead in mainfaining @ graph o histories. By simulation studiies, we showed that CBI reduced the
abort rafe and unnecessary operations. Additionally, we showed that CBI outperforms not only BIS but also TSH with low space

overhead.

= Keyword : re-ordering schemes, CBI, BTS, TSH, Broadcaost Invalidation Approach, Certification Protocol

1. Introduction

Kung and Robinson[1] proposed the optimistic concur-
rency control scheme(OCC). Three popular variations
of OCC are pure OCC(POCC)[1], broadcast OCC
(BOCO)[2] and certification protocol based on time-
stamp history(TSH)[3]. The POCC scheme aborts a
transaction only at its commit time when the validity
of its data access is checked. In the BOCC scheme,
comumitting transactions cause abort of conflicting trans-
actions in the middle of their execution. In TSH, the
read set of the transaction being validated is compared
with the current write time-stamp. If conflicts are

* 38 st ARFASY w
zoch@hanshin.ac.ke(A| 13 2)

e Fasel : datid YT Fag
kangmg @hanshinac.kr(--5 A 2H

detected, the transaction can be committed with re-
ordering time-stamp based on read time-stamps and
write time-stamp histories.

Consider te following example to compare these
three schemes. Suppose that transaction X reads data
items D; and D; and writes D, transaction Y reads
data items D, and D; and writes D;, and transaction
Z updates data items D, and D, as in Figure 1,
where R(.) and W(.) represent the read and write
operations respectively, C indicates the commit, and
the subscripts identify the transaction. Additionally, ¢
denotes the real time.

In POCC, if transaction X is committed at time
t;, transactions Y and Z are aborted at time ¢, and
t3 respectively, since they have read a “wrong” version
of data D>. In BOCC, if transaction d is committed
at time t;, transactions Y and Z are aborted at time

gk lEL HEstE (3A 635)

79

BREAHAE 255} 7|HE 0|8% o1F Z2EZ

Tx : Rx(D]), Rx(Dz), WX(DZ), CX
Ty : R(D;), Ry(Ds3), Wi(Ds), Cy
Tz : RADy), WD), Ry(Dy), W(Dy), Cz

Time t t t

(Figure 1) Time Line of Operations of
Transactions X, Y and Z

t; in order to reduce unnecessary operations.
However, POCC and BOCC make spurious aborts.
The reason is that transaction Y could actually be
committed in TSH, since its effect is equivalent to
the serial log of transaction Y committing first and
transaction X next. Hence, TSH can reduce the
number of aborts due to read-write conflicts by
re-ordering. This type of read-write conflict is
called a “reorderable read-write conflict”, since the
conflict can be resolved by re-ordering the time-
stamp assignments, and transaction Y is said to be
“re-ordered”. Also, this type of abort can be reduced
by SGT[4] and Multi-versioning[5].

It is clear that re-ordering can enhance the perfor-
mance of the OCC schemes. However, re-ordering
schemes have space overhead. For example, SGT
requires substantially more storage for the serialization
graph and additional overhead in maintaining the seri-
alization graph and checking for cycle. The multi-
versioning scheme keeps multiple versions for each
data item in order to provide a consistent view of
the database to all active transactions. It also has
very high space overhead. TSH maintains one read
time-stamp and k write time-stamps (k = 2) per data
item. Already mentioned in [3], The size of k affects
the performance of TSH The main motivation of our
approach is to reduce space overhead of re-ordering
scheme. Compared with other re-ordering schemes, our
scheme maintains only one time-stamp per each data

item.

In the above example, although transaction Y
can be committed by re-ordering, transaction Z can
not be committed, because it accessed write-write
conflicting data D;. It means that transaction Z
performs unnecessary operations such as Rz(Dy)
and WzDs), because aborts happen only in the
validation phase in the OCC schemes except for
BOCC[6]. Our scheme can reduce the unnecessary
operations due to write-write conflict.

The final motivation is to reduce validation time.
In TSH, the server accesses N data items to validate
a transaction, where N denotes the number of elements
in the read set of the transaction. In addition, if a
transaction to be re-ordered, the server have to access
N + (M *2) data items, where M denotes the number
of elements in the write set of the transaction. In our
scheme, not only some read-only transactions but also
some updating transactions can be committed without
validation based on distributed information for re-
ordering. Furthermore, the server accesses only M data
items for re-ordering.

In this paper, we proposc a certificate protocol
called CBI(Certification Protocol based on Broadcast
Invalidation). Our scheme adopts a re-ordering scheme
based on a broadcast mechanism. In particular, we
start with simple algorithm that maintains only one
time-stamp and then extend the algorithm to enhance
the performance. Although our scheme is very similar
to BOCC, it dose not make any spurious aborts that
happen in BOCC. In addition, our scheme reduces
space and time ovethead compared with other re-
ordering schemes.

This paper is organized as follows. We explain
our scheme and show some examples in Section 2.
Section 3 shows the extended algorithm to enhance the
performance. Our simulation experiments are discussed
in Section 4. Finally, our conclusion is presented
in Section 5.

80

2002. 12.

HECHAE 2535 7|

BHq

g 0[8%

[

= =

oM
|kl

2E

ik

2. Certification Protocol based
on Broadcast Invalidation

Recently there has been increasing interest in the
development of broadcast protocols such as Amoebal7],
ISIS[8], Transis[9}, Total[10] and Totem[11]. Since
implementation of an efficient broadcast mechanism
is not the main issue of this paper, we assume that
the system has an efficient broadcasting mechanism
and network is always reliable, i.e., each message is
delivered preserving the sending order without loss.
To simplify our algorithm, we also assume that all
write operations are update(i.e., write-afterread) oper-
ations. This assumption is eliminated in Section 3.

2.1 Validation with Broadcasting

In our scheme, we maintains time-stamp D.T for
each persistent data D. The time-stamp D.T is the
time-stamp of the youngest(i.e., lastest in time)
committed transaction which read the data. When a
transaction wants to read data Dj, the server sends
the data with the current time-stamp D.T. Hence, a
transaction views each data item as a (name, version)
pair (e, (D, D.T) pair).

For re-ordering, each client maintains the lower
bound of re-ordering time-stamp(7") and the upper
bound of re-ordering time-stamp(7”). The re-ordering
tirne-stamp(]R) is always larger than time-stamp T
and smaller than time-stamp 7°. The initial value
for time-stamps T° and 7” is the smallest time-
stamp in the system.

When transaction X is ready to enter its commit
phase, the client of the transaction sends to the server
a message confaining time-stamps X.7°, X.T°, sets
X.8* and X", where X.5* and X.5" contain ID’s
of the data items read and written by transaction X,
respectively. When the server receives the message,

/* Whenever transaction Y reads a data item D; */

If (YT" < Di)

{ YT = D.T:
It (YTU = the initial value and YT- > Y.TV
- &) Abort transaction Y; |}

Y.t = vs® + Dy

(Figure 2) Check algorithm whenever a
transaction accesses a data item

the server assigns a unique committing time-stamp
X.T° to the transaction for certification. After that,
transaction X is committed without validation only if
time-stamp XT' is the initial value, ie., the server
reflects updated data items in set X.S” to the database,
and sets time-stamp D.T to XT° for each data D;
in set X.5".(We will desctibe how transaction X can be
committed without validation in Section 2.2.) After
that, the server broadeasts an invalidation message to each
client that contains time-stamp X71° and set X.5".

When a remote client gets the information, if
transaction Y has written some data in set X.SW,
then transaction Y is aborted in order to reduce
unnecessary operations. Actually, transaction Y has to
be aborted in its validation phase, because it has
accessed write-write conflicting data. Otherwise, if
transaction Y has read some data items invalidated
by transaction X, transaction Y can be committed
only with re-ordering. Besides, time-stamps Y.T" and
Y.1" are updated.

Time-stamp 7; is updated by the following rule.
Whenever transaction Y reads data D, time-stamp
Y.T" is compared with the time-stamp D.T. If time-
stamp Y.T" is less than the time-stamp D.7, then
time-stamp Y.7" is set to D.T. Hence, time-stamp 1"
is never decreased after it is changed from the initial
value. Whenever time-stamp Y.7" is increased, time-stamp
Y.T' is also compared with time-stamp Y.7'- &,
where § is an infinitesimal quantity. If time-stamp
Y.7V is not the initial value and time-stamp Y.T" is

512 Ole{yl X 5ts| (3R 63)

81

H2EHAAE 255} 7|

£ 082

ot of

o
[kl

2R

T

/* Whenever the client gets an invalidation message
that contains X.7° and X.8" #/
If (Y.8¥ N XS+ @) Abort transaction Y;
If (v8' n xs¥+)
{ If (.1 = the initial valug) Y.T' = X.1°
Hlse If (YTV > XT9 Y1V = X15
YSs = YSs + (xsf n x5y
If (Y.T' > Y.TY - 5) Abort transaction Y; }

(Figure 3) Check algorithm when a client
gets an invalidation message

/* Whenever transaction Y writes a data item D; */
If (D; € Y.S') Abort Transaction Y;
Y.s" = Y5V + D}

(Figure 4) Check algorithm whenever a
transaction writes a data item

larger than or equal to Y.7°- §, then transaction ¥
is aborted, because the client can not find any re-
ordering time-stamp for transaction Y. (See Figure 2)
Now, we describe how a time-stamp T' is updated.
When the client of transaction Y gets an invalidation
message that contains X.7° and X5" the client
checks using the following rules. (See Figure 3)

« For each data D; in set X.8", if transaction Y has
written data D', the client aborts the transaction Y
immediately. It means that transaction Y has accessed
a write-write conflicting data item, because transaction
X has written data D; and committed.

« For each data D, in set X.S”, if transaction ¥ has
read data D, then the client changes the value of
time-stamp Y.1". Time-stamp YT is compared
with time-stamp X.7° If timestamp Y.7° is the
initial value, then time-stamp Y.7” is set to X.7°
Otherwise, time-stamp Y.7” is set to time-stamp
XT° if time-stamp Y.7' is larger than X.1
Hence, time-stamp Y.1' is never increased after it
is changed from the initial value. After that, data
D in set X§" and Y.8" is inserted in to the set
Y. to prevent unnecessary operations.

« Whenever time-stamp Y.7” is changed, if ¥.77- &
is less than or equal to Y.7', then transaction Y
is aborted. It means that the client of transaction
Y can not find any re-ordering time-stamp Y.T?

Whenever transaction Y writes on a data item, The
client of transaction Y checks whether the data is in
set Y.8, If so, transaction Y is aborted (See Figure 4).
However, maintaining set ' is optional, because trans-
action Y has to be aborted in the validation phase
even if the client dose not abort transaction Y.

2.2 Committing Transactions

Now, we describe how a read-write conflicting
transaction can be committed in our scheme. When
transaction Y requests a commit, transaction Y can be
committed with re-ordering time-stamp Y.7% (Y.T% =
Y.1V- §) only if time-stamp Y.7” is not the initial
value. However, the server has to check whether
there are indirect conflicts or not, because time-satmp
Y.7" denotes the minimum time-stamp among the time-
stamps of the committed transactions that are conflicts
directly with transaction Y. Hence, after setting Y.T",
the server checks whether Y.7° is always larger
than time-stamp D.T for each data D; in set Y.S"
(Indirect conflicts check). If time-stamp Y.T® does not
satisfies the rule, transaction Y is aborted. Otherwise,
transaction Y is committed with time-stamp Y.7% In
commit processing, the server reflects updated data
in set ¥S" to the database, and sets time-stamp
DT to Y.T® for each data D; in set Y.5*¥ only if
time-stamp DT is less than Y.T" After transaction
Y is committed, the server broadcasts an invalidation
message to each client. The message contains re-
ordering time-stamp Y.T" and set Y.5”".

In our scheme, when transaction X requests a comimiit,
the transaction is committed without validation only

82

2002. 12.

H2CSHAE F55 7[ME o3t o

o
|6l

2K

R

/* When transaction Y requests a commit */
/* Validation Phase */
¥ (Y.TY = the initial value)
{ YT¢ = YTV - 5;

For (each data D; € Y.8%)

If (DT > Y.T9 Abort transaction Y;
}
Hise assign time-stamp Y.1°

/* Commit Processing */
For (each data D € Y.8") Updates data D;
For (each data Dy (Y.S%)

If (DT < Y.TI9 DT = YT

/* Broadcast an invalidation message */
Broadast an invalidation message containing Y.T° and Y.SW;"

(Figure 5) Validation algorithm when a
transaction requests a commit

if time-stamp X.7° is the initial value, because it
means that transaction X did not access any data
items modified by other committed transactions in
its execution phase. However, serialization can be
broken when the server and the client of transaction
X send messages to each other at the same time.
This case can be treated by several ways. For example,
the server can use a Broadcasting Queue(BQ) and a
threshold which is slightly larger than the largest
message delay in the system. At any moment t, the
BQ maintains messages broadcasted in the time
interval [t - threshold, {]. When the server gets a commit
request message from transaction X, it checks the
BQ and changes the time-stamp X.7” based on the
algorithm in Figure 3 if the BQ has the data that
have been read by transaction X. If the BQ does not
have any data that have been read by transaction X,
transaction X is committed without validation. Otherwise,
transaction X is treated as a re-orderable transaction.

An alternative way is to be use a two-phase
protocol. Before sending a commit request message,
the client of transaction X sends a commit pre-request
message to the server. After that, the client can
send a commit request message to the server only

after it receives an acknowledgement of the commit
pre-request message. When the server gets a commit
pre-Tequest message, it stops broadcasting and waits
until it gets the commit request message from the
client. Hence, we will not deal with this kind of
problem any more, because it is rare and can be
treated. Thus, when transaction X requests a commit,
the transaction is committed without validation if
time-stamp X.T" is the initial value. In Figure 5,
we summarize the check algorithm to be used when
the server gets a commit request.

3. Extension to Enhance the
Performance

The CBI protocol can make spurious aborts even
if such aborts are rare. Consider the following exanple.
Suppose that transaction X reads data items D; and
writes D», transaction Y reads data items D, and D;
and writes Ds, ie., Ry(D;), R{Ds), WD), Cx, R(Dy),
WoD;), Cy. If transaction X is committed at time
tss, transaction Y is aborted when transaction Y reads
data D;. The reason is that transaction Y can not find
any re-orderable time-stamp, because the value of
time-stamp Y.T"(=tss) and that of Y.T"(=tss) are the
same. This kind of unnecessary aborts can happen when
transaction Y has read the data updated by transaction
X before transaction X is committed and it reads
again the other data read by transaction X after
transaction X is committed. (we call it unnecessary
aborts due to cross read) In this section, we extend
our algorithm to eliminate such unnecessary aborts and
the assumption that all write operations are update
operations. In addition, we use Thomas’ Write Rule to
improve the performance.

In the extension, called CBI/2, we maintain read time-
stamp DT and write time-stamp D”.T for each persistent
data D. The time-stamps D°.T and D".T are the time-

=

ror

b= QIR Y| (3A 63)

83

0|88

ot olE ZEEE

stamp of the voungest committed trans- action which
read and wrote the data, respectively. A transaction views
cach data item as a (D;, D;".T) pair. When transaction
X is ready to enter its commit phase, the server assigns
a unique committing time-stamp X.7° to the transaction
for certification. After transaction X is committed, the
server reflects updated data items in set x5" to the
database, sets time- stamp DT to X.T¢ for each data
D; in set X.5%, and sets time-stamp D;”.T to X.T° for
each data D; in set x.S". After that, the server
broadcasts an invalidation message to each client that
contains X.7°, X.8* and xs”.

In the extension, time-stamp T is updated by the
same rule(See Fgure 2). When the client of transaction
Y gets the invalidation message, the first rule for
updating 7" is replaced with the following rule.

« For each data D; in set X.5¥ and X.8”, if transaction
Y has read and written data D;, the client aborts
the tramsaction Y immediately. It means that transaction
Y can not be re-ordered, because transaction X
has updated data D; and committed.

When transaction Y requests a commit, if time-
stamp Y.7" is not the initial value, the server checks
whether Y.7° is always larger than time-stamp DT
for each data D; in set Y. (indirect complete check). If
time-stamp Y. T does not satisfy the rule, transaction
Y is aborted. Otherwise, transaction Y is committed with
time-stamp Y.7° In the commit phase, for each data
D; in set Y.5”, the server sets time-stamp D".T to ¥.7°
and reflects updated data to the database only if time-
stamp D".T is less than Y.T. Otherwise, reflection to
the database is ignored(Thomas’ Write Rule). In addition,
for each data Dy in set Y.8, time-stamp DET is set
to Y.I® if timestamp DT is less than Y.T°. After
transaction Y is committed, the server broadcasts an
invalidation message to each client. The message contains

re-ordering time-stamp Y. 7" Y.5* and set ¥.8" We
omit the extended algorithm because of page limitation.

Consider again the above zxample. After trans-
action X is validated at time ts:, the server sets DRT
and D,”.T to tss and broadcasts a message containing
X715 XS® and X.8". After Client 2 gets the message,
transaction Y is not aborted when transaction Y reads
data D), because the value of time-stamp Y.T=ts)
and that of Y.T%=tss) are different (See Table 7).
Hence, transaction ¥ can be committed with re-ordering
time-stamp s,

To prove that CBI is correct, we have to prove
that all histories representing executions that could be
produced by it are seralizable. Although we don’t
prove formally the correctness of our protocol, we
describe an idea based on serialization graph. The
idea is to associate time-stamps with transactions in
such a manner that each edge in the serialization
graph is from a transaction with a smaller time-starmp
to a transaction with a larger time-starmp. The assignment
of a transaction time-stamp in the valid interval (i.c.,
between the lower bound and the upper bound) of
all read data items to a committing transaction guarantees
that each edge from the committing transaction is to
a transaction with a larger time-stamp. Requiring the
transaction time-stamp to be larger than the read
time-stamip of updated data implies that no transaction
with a larger time-stamp has an edge into the
committing transaction. This ensures that the serialization
graph is acyclic. By the Serializability Theorem in
[5], all histories produced by CBI are serializable.

4. Simulation Study

In this section, we compare the proposed schemes
with Basic Time-stamp Certification(BTS) and TSH.
Table 8 shows the relevant system parameters, their
meanings and values. All the simulations were done

84

2002. 12.

(Table 7) Parameters

Parameter Meaning Values
Data_Size Number of data items 1000, 5000
Tr_Size Mean size of transaction 10
Max_Tr Size of largest of transaction 14
Min_Tr Size of smallest transaction 6
Write_Prob Probability(Write X | Read X) 20, 40, 60, 80, 100%
Ex IT Mean time between operations. 200
Ex_10 Mean time between transactions 200
Restart_Delay Transaction restart delay 100
No_Tr Number of transactions 20, 40, 60, 80, 100, 120, 160, 200
Time_Read Read operation delay 30
Time_Write Write operation delay 30
Time_Netdelay Network delay 100
o -O-TsH ety
120 _g_i;z 1204 . 4. cBl 26 s ® m\ﬁ'\
+- cBI ‘va ﬁ\ﬁ
v. . &
100 4 S oed \V\
'é 24 V)
“ g V-
é 80 o i 80 o 2 \V
: 2 g
i -
z 5 e
2 40 + > 40
" £]
20 z’ 20 - -H -x7--BTS
.V“ ot . /m/ 73‘ TSH
_g g’m/m/ & m/mfa-m"' L8 B
o | m--m- a8 o B~ -
20 40 60 80 100 120 140 360 180 2060 20 40 6'0 5'0 |0‘0 IZIB HIO |5I0 1!;0 20’0 2'0 4'0 5'0 E‘U 1(;0 1;0 NYO \16; 13’0 21;0
The Number of Transactions The Number of Transactions The Number of Transactions
(Figure 7) (Figure 8) (Figure 9)

using a queuing system model. Our simmlation assumes
that all write operations are update operations. We
use 6 time-stamps for TSH(1 for read time-stamp, 5
for write time-stamp history) following the simulation
study in [3]. In this abstraction, we do not describe
our simulation and its parameters in detail, because
of page limitation,

The first experiment examined the throughput of three
schemes for a variety of the number of trans-actions,
assuming low-to-moderate contention (Data_Size is 5000).
The figure 7 shows the number of aborts when Write_
Prob is 20%. With the given setting, the number of aborts

increases in all schemes as the number of transaction
increases, because the conflict probability is increased.
For BTS, the increased the number of aborts manifests
itself, since it can not re-order conflicting transactions.
The number of aborts of TSH and that of CBI are the
same at 100 trans- actions and below. For more than
100 transactions, the number of aborts of CBI is
slightly higher than that of TSH i our simulation
results, because of spurious aborts due to cross read.

The Figure 8 shows the number of re-ordered trans-
actions. In both schemes, the number of re- ordered
transactions is increased as the number of transactions

g QIE{l HEEtE| (33 63)

85

878
1204 _C-Tsh v
+.-cB) !

100 4

The Number of Aborts

404

The Number of Re-ordered Transactions

Throughput

204 e 20 AF - BTS
N oL o -O-T1sH V..
o m/m/ﬁl Pl A Ty
04 ;‘E!"“ o B
T L AL L T T T T T T T T T T T T T — T T T T T
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 (80 200 20 40 60 80 100 120 140 180 180 200
“he Number of Transactions The Number of Transactions The Number of Transactions
(Figure 10) (Figure 11) (Figure 12)

is increased, because the read-write conflict probability
is increased. For any number of transactions, the difference
between the number of re-ordered transactions in CBI
and that in TSH(Figure 8) and the difference between
the number of aborted transactions in CBI and that in
TSH(Figure 7) are the same.

The Figure 9 shows the throughput of all schemes.
Our scheme outperforms not only BTS and but also
TSH. Only Figure 7 and 8 considered, the performance
of CBI seens to be lower than that of TSH. However,
the benefit of CBI scheme is not represented in Figure
7 and 8. Compared with two schemes, our scheme
has a mechanism to reduce unnecessary operations due to
write-write conflicts. As the conflict probability increases,
the benefit of the reduction is also increased. In addition,
our scheme reduces validation time compared with TSH.
In CBI, a transaction is committed without validation
if its time-stamp 7 is the initial value. In addition, to
re-order a transaction, the server accesses |SW| data. By
these reasons, the gap between TSH and CBI is
increased as the number of transactions increases.

The next experiment examines the throughput of
three schemes assuming high-to-moderate contention.
For the experiment, we set Data_Size to 1000. While OCC
schemes are not suitable in high contention environments,

we use this setting to gain a better understanding of
three schemes. Figure 10 shows the number of aborts
with a variety of the number of transactions (Write_
Prob is 20%). The number of aborts in three schemes
increases rapidly as the number of transactions increases,
because the conflict probability is higher than that of
the first experiment(Figure 7). In addition, the difference
between the number of aborts in CBI and that in TSH
is increased compared with Figure 7, because the
number of unnecessary aborts is increased.

The Figure 11 shows the number of re-ordered
transactions in two schemes. The difference between
the number of re-ordered transactions in CBI and
that of TSH is also increased compared with Figure
8 by the same reason. However, the gap between
the number of re-ordered transactions in CBI and
that in TSH(Figure 11) becomes different from the
gap between the number of aborted transactions in
CBI and that in TSH(Figure 10). The reason is that
CBI may cause re-aborted transactions.

Consider the following example; suppose that
tramsactions X, Y and Z perform read and write operations
as in Figure 13. In this example, transaction Y is
aborted during its execution phase by transaction X,
because it updates data D; that was updated by trans-

86

2002. 12.

HEZEHAE 253} 7|HE o|g5t 218 ZREZ
- BTS -7 BTS
Tx: v RX(DI), WX(DI), Cx 261 " -O-TsH 2 * ¢ -g-TsH
ok + cal ok + cal
Tv: R(Dy), WrD3), Ay (Restart) Ry(Dy), Wr(D3), Rv(D»), D\; ”\;
Wy(Dz), Ay aloe ‘ + wlve ‘ +

Tz ReADs), Wi(Ds), Re(Dy), W(Ds), Cz

Time t1 2

(Figure 13) Time Line of Operations of
Transactions X, Y and Z

action X. After transaction Y is re-started, transaction
Y is also re-aborted at time #, by transaction Z since
it updated the data D, This kind of abort can
happen in CBI and BOCC due to their mechanism
to abort the transactions during their execution phase.
However, transaction Y can be aborted once in BTS
and TSH, because abort always occurs at the end of
the transaction. However, this kind of re-abort is rare
and only happens in high conflicting situation.

In Figure 12, the throughput of all schemes is
decreased dramatically as the number of transactions
increases. However, our scheme also outperforms
not only BTS and but also TSH. As the figure
shows, the gap between TSH and CBI is not
increased even if the number of transactions increases.
The reason is that the benefit of reducing unnecessary
operations and validation time loses by the effect of
unnecessary aborts and re-aborts.

The third experiment examines the throughput of
three schemes varying the write probability from 20%
to 100%. The conflict probability is increased as the
write probability increases. In addition, the write-write
conflict probability is also increase, because we force
that all write operations is update operations in our
simulation. Hence, this experiment shows the benefit
of aborting the write-write conflicting transactions clearly.

Figure 14 shows the result of the experiment when
Data_Size is 5000 and No_Tr is 100. The throughput
in all schemes is decreased as the write probability
increases. However, compared with other schemes,

Throughput
Throughput

T
60
Write_Proo

(Figure 15)

Write _Prob

(Figure 14)

the throughput of TSH is decreased rapidly, because
the number of re-ordered tramsactions is decreased
since write-write conflicts are increased. At 100%
write probability, all conflicts are write-write conflicts.
Hence, the performance of TSH is less than that of
BTS, because the validation overhead of TSH is higher
than that of BTS. The gap between the throughput
of CBI and TSH is increased as the write probability
increases. The reason is that the benefit of aborting
the writing-writing transactions is increased even if
the number of re-ordered transactions is decreased.
Hence, the gap at write probability 100% shows the
whole benefit of reducing unnecessary operations and
validation time.

The last experiment examines the throughput of
CBI/2 and that of CBI. We use the same values of
parameters of the first experiment. In this experiment,
the number of re-ordered transactions of TSH and
that of CBI2 are the same. Also, the number of
aborts of TSH and that of CBI/2 are the same (not
shown). It means that CBI /2 can reduce unnecessary
aborts due to cross read. However, in high contention
environments, the number of aboris of CBI/2 and
that of TSH may differ, because CBI/2 can make
unnecessary aborts due to re-aborts.

Figure 15 shows the throughput result of the
experiment. To show the result clearly, we magnate

9ol

o

[E]]

A

ror

= I HE

o

3| (3 63)

87

o|gst ol

=l

o[y
L

2E

1]

the Y-axis 3 times. Even if the storage for time-stamp
of CBI/2 is increased 2 times, its throughput is the
same as that of CBI at 100 transactions and below.
For more than 100 transactions, the throughput of
CBI/2 is little higher than that of CBI because it
reduces unnecessary aborts due to cross read.

5. Conclusion

The performance of OCC is very sensitive to the
transaction abort rate. Even if the abort probability
can be reduced by re-ordering, most of re-ordering
schemes have space overhead in maintaining a graph
or histories. Already mentioned in [12], space overhead
for time-stamp can be significant for small object.
In this paper, we proposed an efficient re-ordering
scheme based on a broadcast mechanism. Our scheme,
called CBI, can reduce the abort probability without
space overhead in maintaining a graph or histories.

In our simulation study, we showed that CBI reduced
the abort rate and unnecessary operations. Additionally,
we showed that CBI outperforms not only BTS but
also TSH with low space overhead. In CBI, there
are spurious aborts due to cross read. Hence, we
also proposed an alternative scheme called CBI/2 to
improve the performance. However, through several
simulation experiments, we find out that CBI/2 does
not outperform CBI significantly even if storage
overhead is increased twice. However, CBI/2 is a useful
scheme, because it dose not restrict operation type.

In our schemes, information for re-ordering is
distributed among clients based on broadcast invalidation.
Hence, the server maintains only one(CBI) or two
(CBY/2) time-stamps for indirect conflict check. In
addition, our schemes can abort a transaction during
the execution phase when it accesses a write-write
conflicting data item. In our scheme, each client
maintains additional information. However, the size

of set §' is the same as that of set S* in the worst
case. In addition, maintaining §’ is optional. Hence,
overhead due to additional information is not significant.

Another issue of re-ordering scheme is time overhead.
SGT has ovethead in maintaining the serialization graph
and checking for cycle. In TSH, when a transaction
requests a commit, the server has to access |$+
(|SW| X 2) data items for re-ordering. In our scheme,
transactions are committed without validation if their
upper bound time-stamp are the initial value. Fur-
thermore, the server has to access |SW| data items

for re-ordering.

References

{1] H. T. Kung and J. T. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM Trans.
Database Syst., vol. 6, no. 2, pp. 213~226,
June 1981,

[2] J. T. Robinson, “Experiments with Transaction
Processing on Multiprocessor,” IBM Res. Rep.
RC9725, Yorktown heights, NY, Dec. 1982.

[3]1 P. S. Yu, H Heiss, and D. M. Dias, “Modeling
and Analysis of a Time-Stamp History Based
Certification Protocol for Concurrency Control”,
IEEE Trans. Know. and Data Eng., vol. 3. no. 4,
pp. 525~537, Dec. 1991.

[4] R J. T. Morris and W. S. Wong, “Performance
Analysis of Locking and Optimistic Concurrecy
Control Algorithms,” Perform. Eval,, vol. 5,
pp. 105~118, 1985.

[5] P. A Berstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Reading, MA: Addison-Wesley, 1987.

[6] S. H Cho, K. Y. Bae and C. Hwang, “Write
Notification for Certification Protocol Based on
Time-Stamp History,” 9th International Workshop
on DEXA, pp. 919~924, Aug. 1998.

88

2002. 12.

2REHAE 253} 7|HE 0|23

ol

ol
i

2k

1]

[71 M. Frans Kaashoek and A. S. Tanenbaum, “Group
Commumication in the Amoeba Distributed Operating
Systems,” Proceedings of the 11th ICDCS, PP.
222~230, 1991.

8] K. P. Birman and R. van Renesse, “Reliable
Distributed Computing with the ISIS Toolkit,”
IEEE Press, 1994.

91 Y. Amir, D. Dolev, S. Kramer, and D. Malki,
“Transis: a communication sub-system for high
availability,” Proceedings of the 22th International
Symposium on Fault-Tolerant Computing, pp.
76~84, 1992.

[10] L. E Moser, Y. Amir, P. M. Mellar-Smith and
D. A. Agarwal, “Extended virtual synchrony,”

(11]

[12)

[13]

Proceedings of the 14th ICDCS, pp. 56—~65,
1994.

L. E Moser, P. M Mellar-Smith, D. A. Agarwal,
R. K. Budhia and C. A. Lingley-Papadopoulos,
“Totem: A Fault-Tolerant Multicast Group Cotmmu-
nication Sytem,” Communication of the ACM,
39(4), pp. 54~63, 1996.

A. Adya, R Gruber, B. Liskov and U. Maheshwari,
“Efficient Optimistic Concurrency Control Using
Loosely Synchronized Clock,” ACM SIGMOD,
1995.

A. S. Tanenbaum and M. V. Steen, “Distributed
Systems Principles and Paradigms,” Prentice
Hall Press, 2002.

OMMLENOD

z2 d 2

199413 F5ofFoithstal HFE & eHEEAD
1997 m2ihshsn MAbstal o] 8t 4A]
20001 srefh skl ZFE K] SuAp
200004 ~20013 : (FIMPSCOM 7] &7} o)A}
20013 ~20024 HAHST HHFAEE g
2002 ~ @A - PN FRFAGR wp

Aol B A2, eddd B 4 A2" A, o)F HFY

E-mail : zoch@hanshin.ac kr

TR

198613 A|thetw AAbEerHEFa D
1989 Akl AAbgStH(EEH4Ah
19943 AAhstn ARSI A
19854 ~1987'd Ag8A A4

1971 ~1998d A& AP} tE} A
19943 ~2000 S oSt R FA1F 5

:’L
_IT!__

L(Post Doc.)

Zua

20009~ B : QAT AR FAS L

TRl o] FFAIA 2,

E-mail : kangmg@hanshin.ac.kr

FAEY &8

g QB FHEEE| (33 635)

89

