DOI QR코드

DOI QR Code

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load

반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력

  • 김태훈 (성균관대학교 토목환경공학과) ;
  • 김운학 (한경대학교 토목공학과) ;
  • 신현목 (성균관대학교 토목환경공학과)
  • Published : 2002.08.01

Abstract

The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

본 연구는 반복 횡하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력을 파악하고 합리적이면서 경제적인 내진설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 횡방향 구속철근으로 인한 강도의 증가 효과를 고려하였다. 두께가 서로 다른 부재간의 접합부에서 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면요소를 도입하였다. 또한, 같은 변위진폭에 있어서의 하중재하 회수에 의한 효과를 고려하였다. 본 연구에서는 반복 횡하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력의 파악을 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

Keywords

References

  1. 김태훈, 이상철, 신현목, "비탄성 손상 해석을 이용한 철근콘크리트 교락의 내진성능평가," 대한토목학회 논문집, 제21권, 3-A호, 2001, pp.361-372.
  2. 김태훈, 유영화, 신현목, "지진하중을 받는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구," 한국지진공학회 논문집, 제4권, 4호, 2000, pp.37-51.
  3. Mander, J. B., Priestley, M. J. N., and Park, R., "Theoretical Stress-Strain Model for Confined Concrete," Journal of Structural Engineering, ASCE, Vol. 114, No. 8, 1988, pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  4. Kent, D. C. and Park, R., "Flexural Members with Confined Concrete," Journal of Structural Engineering, ASCE, Vol.97, No.7, 1971, pp.1969-1990.
  5. Saatcioglu, M., Alsiwat, J. M., and Ozcebe, G., "Hysteretic Behavior of Anchorage Slip in R/C Members," Journal of Structural Engineering, ASCE, Vol. 118, No. 9, 1992, pp.2439-2458. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2439)
  6. 김태훈, 신형목, "지진시 철근콘크리트 기둥-기초 접합부의 불연속 변위에 관한 해석적 연구," 한국콘크리트학회 논문집, 제12권, 6호, 2000, pp.83-90.
  7. Mander, J. B., Panthaki, F. D., and Kasalanati, K., "Low-Cycle Fatigue Behavior of Rein- forcing Steel," Journal of Materials in Civil Engineering, ASCE, Vol. 6, No. 4, 1994, pp.453-468. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(453)
  8. Perera, R., Carnicero, A., Alarcon, E., and Gomez, S., "A Fatigue Damage Model for Seismic Response of RC Structures," Computers and Structures, Vol. 78, 2000, pp.293-302. https://doi.org/10.1016/S0045-7949(00)00071-7
  9. 김태훈, 이상철, 신현목, "지진시 철근콘크리트 교각의 피로거동에 관한 해석적 연구," 한국콘크리트학회 논문집, 제13권, 4호, 2001, pp.389-396.
  10. Taylor, R. L., "FEAP - A Finite Element Analysis Program," Version 7.2, Users Manual, Volume 1 and Volume 2, 2000.
  11. 김태훈, 신현목, "Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures under Seismic Loads," 한국지진공학회 논문집, 제5권, 2호, 2001, pp.113-124.
  12. Rodriguez-Gomez, S. and Cakmak, A. S., "Evaluation of Seismic Damage Indices for Reinforced Concrete Structures," Report No. NCEER 90-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo.
  13. Roufaiel, M. S. L. and Meyer, C., "Analytical Modeling of Hysteretic Behavior of R/C Frames," Journal of Structural Engineering, ASCE, Vol. 113, No. 3, 1987, pp.429-444. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(429)
  14. Chung, Y. S., Meyer, C., and Shinozuka, M., "Modeling of Concrete Damage," ACI Structural Journal, Vol. 86, No. 3, 1989, pp.259-271.
  15. Kratzig, W. B., Meyer, I. F., and Meskouris, K., "Damage Evolution in Reinforced Concrete Members under Cyclic Loading," Proceedings of 5th International Conference on Structural Safety and Reliability, San Francisco, Vol. II, pp.795-802.
  16. Park, Y. J., Ang, A. H.-S., and Wen, Y. K., "Damage-Limiting Aseismic Design of Buildings," Earthquake Spectra, Vol. 3, No. 1, 1987, pp.1-26. https://doi.org/10.1193/1.1585416
  17. Stone, W. C. and Taylor, A. W., "Seismic Performance of Circular Bridge Column Designed in accordance with Aashto/Caltrans Standards," NIST Building Science Series 170, National Institue of Standards and Technology, Gaitherburg, M. D.
  18. Williams, M. S., Villemure, I., and Sexsmith, R. G., "Evaluation of Seismic Damage Indices for Concrete Elements Loaded in Combine Shear and Flexure," ACI Structural Journal. Vol. 94, No. 3, 1997, pp.315-322.
  19. Yunfei, H., Yufeng, C., Chang, S., and Bainian, H., "The Experimental Study of Two-Bay Three-Story Reinforced Concrete Frame under Cyclic Loading," Proceedings of the 8th Symposium on Earthquake Engineering, Roorkee, India, 1986.

Cited by

  1. Low Cycle Fatigue Behavior of Longitudinal Reinforcement vol.22, pp.2, 2010, https://doi.org/10.4334/JKCI.2010.22.2.263