DOI QR코드

DOI QR Code

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise

콘크리트의 수화도 및 단열온도상승량 예측모델 개발

  • Published : 2002.02.01

Abstract

Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

콘크리트는 수화과정을 통하여 재료가 성숙되고, 경화된다. 수화의 진행은 엄밀한 의미에서 재령에 의하지 않고 수화도에 의해 제어되므로, 경화가 진행되는 콘크리트의 모든 재료특성과 미세구조 형성과정은 수화도에 의해 정식화되는 것이 바람직하다. 기존 연구는 주로 양생온도가 수화발열속도에 미치는 영향을 고려한 반응함수 개념을 주로 사용하였고, 또한 내부 수분상태의 영향을 습도함수의 형태로 고려한 연구결과는 실제 수화기구를 반영하지 못하고 단지 각 연구자의 실험조건과 배합조건에만 부합하는 결과를 보인다. 따라서 본 연구는 기존 제안식의 단점을 보완하기 위하여 수화기구와 미세구조 형성 과정에 기초하여 반응속도함수를 모델링하였다. 수화반응속도는 온도 및 수분상태에 따라 변화하므로, 본 연구에서는 수화발열 속도에 영향을 미치는 인자로, 시멘트 종류, 물-시멘트비 등의 배합특성과 양생온도 빛 세공조직의 내부수분상태를 고려하였다. 똔 연구에서 제시한 콘크리트의 수화도 예측모델은 기존의 온도영향만을 주로 고려하는 반응속도함수를 콘크리트내부의 수분분포 상태를 고려하여 모델을 개선하였으며, 이는 실제 측정한 수화도에 매우 근접하여 그 유용성을 검증하였다. 또한 수화도의 정의와 제시한 모델을 이용하여 콘크리트 요소내의 온도, 습도 덴 수화도를 수치적으로 결정하여 단열온도상승곡선을 정확히 모사 할 수 있었다. 제안된 모델은 수화가 진행되는 콘크리트의 여러 역학적 특성 및 미세구조 형성과정을 적절히 표현하고, 수화과정이 온도 및 습도상태를 결정하는 초기재령 콘크리트의 단면 내 온 습도상태를 추정하여 궁극적으로 초기재령 콘크리트의 균열 위험성을 평가하는데 유용하게 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Byfors, J. "Plain Concrete at Early Ages," Swedish Cement and Concrete Research Institute, 1980.
  2. Neville, A. M., "Properties of Concrete," 4th ed., Addison Wesley Longman Ltd, 1995.
  3. Nurse, R. W., "Steam Curing of Concrete," Magazine of Concrete Research, Vol. 1, 1949, pp.79-88. https://doi.org/10.1680/macr.1949.1.2.79
  4. Friesleben Hansen, P., and Pedersen, E. J.. "Maturity Computer for Controlled Curing and Hardening of Concrete," Journal of the Nordic Federation, No.1, 1977, pp.21-25.
  5. Jonasson, J-E., "Slipform Construction Calaculation for Assessing Protection Against Early Freezing," Swedish Cement and Concrete Research Institute, 1985.
  6. Powers, T. C., and Brownyard, T. L., "The Thermodynamics of Adsorption of Water on Hardened Cement Paste," ACI Journal, Vol. 18, 1947, pp.549-602.
  7. Parrott, L. J., "Measurement and Modelling of Porosity in Drying Cement Paste," Materials Research Society Symposium Proceedings on Microstructural Development During Hydration of Cement, Vol. 85, 1986, pp.91-104. https://doi.org/10.1557/PROC-85-91
  8. Norling, M. K., "Self-desiccation in Concrete," Licentiate Thesis, Chalmers University of Technology, Sweden, 1994.
  9. Cha, S. W., "Modeling of Hydration Process and Analysis of Thermal and Hygral Stresses in Hardening Concrete," Ph.D Thesis, Seoul National University, Seoul, Korea, 1999.
  10. Locher, F. W., "Zement, Kalk, Gips," Jhg. 29, No.10, 1976, pp.435-442.
  11. Copeland, L. E., and Kantro, D. L., "Hydration of Portland Cement," International Symposium Proceedings on the Chemistry of Cements, Tokyo, Vol. II, 1968, pp.387-421.
  12. Bezjak, A., "On the Determination of Rates Constants for Hydration Processes in Cement Pastes," Cement and Concrete Research, Vol. 10, No.4, 1980, pp.553-563. https://doi.org/10.1016/0008-8846(80)90099-X
  13. Taylor, H. F. W., Cement Chemistry, Academic Press, London, 1990
  14. Parrott, L. J., "Cement Hydration Under Partially Saturated Conditions," International Symposium Proceedings on the Chemistry of Cements, Rio de Janeiro, Vol III, 1986, pp.4 6-50.
  15. Bazant, Z. P., and Najjar, L. J., "Nonlinear Water Diffusion in Nonsaturated Concrete," Materials and Structures, Vol. 5, No. 25, 1972, pp.3-20. https://doi.org/10.1007/BF02479073
  16. Powers, T. C., "A Discussion of Cement Hydration in Relation to the Curing of Concrete," Proceedings of the Highway Research Board, Vol. 27, 1947, pp.178-188.
  17. Powers, T. C., "Physical Properties of Cement Paste," International Symposium Proceedings on the Chemistry of Cement, Washington, Vol II, 1960, pp.577-699.
  18. Jennings, H. M., and Johnson, S. K., "Simulation of Microstructure Development During the Hydration of a Cement Compound," Joumal of the American Ceramic Society, Vol. 69, No.1 1, 1986, pp.790-795. https://doi.org/10.1111/j.1151-2916.1986.tb07361.x
  19. Jennings, H. M., and Tennis, P. D., "Model for the Developing Microstructure in Portland Cement Pastes," Journal of the American Ceramic Society, Vol. 77, No. 12, 1994, pp.3161-3172. https://doi.org/10.1111/j.1151-2916.1994.tb04565.x
  20. Powers, T. C., and Brownyard, T. L., "Studies of the Physical Properties of Hardened Portland Cement," Bulletin 22 of Research Laboratories of the Portland Cement Association, Vol. 22, 1948, pp.276-287.
  21. Breugel, K. van, "Simulation of Hydration and Formation of Structure in Hardening Cemen-tbased Materials," Ph.D Thesis, Delft University of Technology, Delft, The Netherlands, 1991.
  22. Feldman, R. F. International Symposium Proceedings on the Chemistry of Cements, Rio de Janeiro, Vol. 1, 1986, pp.336-356.
  23. Hagymassy, J., Brunauer, J. R, and Mikhail, R. S., "Pore Structure Analysis by Water Vapor Adsorption t-curves for Water Vapour," Journal of Colloid and Interface Science, Vol. 9, No.3, 1969, pp.485-491. https://doi.org/10.1016/0021-9797(69)90132-5
  24. Badmann, R, Stockhausen. N., and Setzer, M. J., "The Statistical Thickness and Chemical Potential of Adsorbed Water Films," Journal of Colloid and Interface Science, Vol. 82, No. 2, 1981, pp.534-542. https://doi.org/10.1016/0021-9797(81)90395-7
  25. Atlassi, E., "A Quantitative Thermogravimetric Study on the Nonevaporable Water in Mature Silica Fume Concrete," Ph.D Thesis, Chalmers University of Technology, Sweden, 1993.

Cited by

  1. An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season vol.31, pp.1, 2007, https://doi.org/10.5916/jkosme.2007.31.1.51