DOI QR코드

DOI QR Code

Unified Constitutive Model for RC Planar Members Under Cyclic Load

주기하중을 받는 철근 콘크리트 면부재에 대한 통합구성모델

  • Published : 2002.04.01

Abstract

A constitutive model unifying plasticity and crack damage mode)s was developed to address the cyclic behavior of reinforced concrete planar members. The stress of concrete in tension-compression was conceptually defined by the sum of the compressive stress developed by the strut-action of concrete and the tensile stresses developed by tensile cracking. The plasticity model with multiple failure criteria was used to describe the isotropic damage of compressive crushing affected by the anisotropic damage of tensile cracking. The concepts of the multiple fixed crack damage model and the plastic flow model of tensile cracking were used to describe the tensile stress-strain relationship of multi-directional cracks. This unified model can describe the behavioral characteristics of reinforced concrete in cyclic tension-compression conditions, i.e. multiple tensile crack orientations, progressively rotating crack damage, and compressive crushing of concrete. The proposed constitutive model was implemented to finite element analysis, and it was verified by comparison with existing experimental results from reinforced concrete shear panels and walls under cyclic load conditions.

철근 콘크리트 면부재의 주기거동을 나타내기 위하여 소성모델과 손상모델의 통합구성모델을 개발하였다. 인장-압축을 받는 콘크리트의 응력은 개념적으로 콘크리트의 스트럿 작용에 의한 압축응력과 인장균열에 의한 인장응력의 합으로 정의하였다. 인장균열의 비등방손상에 의하여 영향을 받는 압축파괴의 등방손상을 나타내기 위하여 다중파괴기준을 갖는 소성모델을 사용하였으며, 다중균열 방향에서 인장응력-변형률 관계를 나타내기 위하여 다중고정균열손상모델과 인장균열의 소성유동모델의 개념을 사용하였다. 이러한 통합모델은 주기 인장-압축 상태의 철근 콘크리트의 거동측성, 즉 다중 인장균열 방향, 점진적으로 회전하는 균열 손상, 콘크리트의 압축파괴를 나타낼 수 있다. 제안된 구성모델은 유한요소해석에 적용되었으며, 주기하중을 받는 철근 콘크리트 전단패널 및 전단벽에 대한 기존의 실험결과들과의 비교를 통해 검증되었다.

Keywords

References

  1. Cachim, P. B., Figueiras, J. A. and Pereira, P. A. A., "Model for Concrete under Cyclic Actions," Proceedings of the EURO-C 1998 Conference on Computational Modelling of Concrete Structures, Badgastein, Austria, Vol.1, 1998, pp.643-651.
  2. Chen, E. S., and Buyukozturk, O., "Constitutive Model for Concrete in Cyclic Compression," J. Eng. Mech, ASCE, Vol.111, 1985, pp.794-814. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:6(797)
  3. Fardis, M. N., Alibe, B. and Tassoulas, L., "Monotonic and Cyclic Constitutive Law for Concrete," J. Struct. Engrg., ASCE, Vol.109, 1983, pp.516-536. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:2(516)
  4. Feenstra, P. H. and de Borst, R., "Aspects of Robust Computational Modeling for Plain and Reinforced Concrete," Heron, 4, 1993, pp.5-26.
  5. Park, H. and Klingner, R. E., "Nonlinear Analysis of RC Members Using Plasticity with Multiple Failure Criteria," J. Struct. Engrg., ASCE, Vol.123, No.5, 1997, pp.643-651. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(643)
  6. "An Inelastic Constitutive Model for Concrete," Theory manual, ABAQUS, Version 4-6, 1990.
  7. Ohmenhauser F., Weihe, S. and Kroplin, B., "Classification and Algorithmic Implementation of Smeared Crack Models," Proceedings of the EURO-C 1998 Conference on Computational Modelling of Concrete Structures, Badgastein, Austria, Vol.1, 1998, pp.173-182.
  8. Kupfer, H. B., Hildorf, H. K., and Rusch, H., "Behavior of Concrete under Biaxial Stresses," ACI Structural Journal, Vol.66, No.8, 1969, pp.656-666.
  9. Vecchio, F. J., and Collins, M. P., "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear," ACI Structural Journal, Vol.83, No.2, 1986, pp.219-231.
  10. Karsan, I. D. and Jirsa, J. O., "Behavior of Concrete under Compressive Loadings," J. Struct. Engrg., ASCE, Vol.95, No.12, 1969, pp.2543-2563.
  11. Bazant, Z. P. and Oh, B. H., "Microplane Model for Progressive Fracture of Concrete and Rock," J. Eng. Mech, ASCE, Vol.111, 1985, pp.559-582. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:4(559)
  12. Okamura, H. and Maekawa, K., "Nonlinear Analysis and Constitutive Models of Reinforced Concrete," Tokyo, Gihodo-Shuppan Co., 1991, pp.36-43.
  13. Brown, R. H., and Jirsa, J. O., "Reinforced Concrete Beams under Load Reversals," ACI Structural Journal, Vol.68, No.5, 1971, pp. 380-390.
  14. Ramm, E., "Strategies for Tracing the Nonlinear Response near Limit Points," Nonlinear Finite Element Analysis in Structural Mechanics, W. Wundelich, E. Stein, and K. J. Bathe, eds., Springer-Verlag KG, Berlin, Germany, 1981, pp.63-89.
  15. Stevens, N. J., Uzumeri, S. M., and Collins, M. P., "Reinforced Concrete Subjected to Reversed Cyclic Shear-Experiments and Constitutive model," ACI Structural Journal, Vol.88, No.2, 1991, pp.135-146.
  16. Ohmori, N., Takahashi, T., Inoue, H., Kurihara, K. and Watanabe, S., "Experimental Studies on Nonlinear Behaviors of Reinforced Concrete Panels Subjected to Cyclic In-Plane Shear," Tran. AIJ, No.403, 1989, pp.105-117 (in Japanese).
  17. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, L. S., Russell, H. G. and Corley, W. G., "Earthquake-Resistant Structural Walls-Tests of Isolated Walls," Report to the National Science Foundation, Construction Technology Laboratories, PCA, Skokie, Illinois, 1976, pp.315.