Flexible Docking of an Acetoxyethoxymethyl Derivative of Thiosemicarbazone into Three Different Species of Dihydrofolate Reductase

  • Published : 2002.12.01

Abstract

Dihydrofolate reductases (DHFR) of human, Candida albicans and E. coli were docked with their original ligands of X-ray crystal complex using QXP (Quick eXPlore), a docking program. Conditions to reproduce the crystal structures within the root mean square deviation (rmsd) of 2.00 $\AA$ were established. Applying these conditions, binding modes and species-specificities of a novel antibacterial compound, $N^4-(2-acetoxyethoxymethyl)-2-acetylpyridine$ thiosemicarbazone (MTSC), were studied. As the results, the docking program reproduced the crystal structures with average rmsd of six ligands as 0.91 $\AA$ ranging from 0.49 to 1.45 $\AA$. The interactions including the numbers of hydrogen bonds and hydrophobic interactions were the same as the crystal structures and superposition of the crystal and docked structures almost coincided with each other. For AATSC, the results demonstrated that it could bind to either the substrate or coenzyme sites of DHFR in all three species with different degrees of affinity. It confirms the experimentally determined kinetic behavior of uncompetitive inhibition against either the inhibitor or the coenzyme. The docked MTSC overlapped well with the original ligands and major interactions were consistent with the ones in the crystal complexes. The information generated from this work should be useful for future development of antibacterial and antifungal agents.

Keywords

References

  1. Bohacek, R. S., Dalgamo, D. C., Hatada, M., Jacobsen, V. A., Lynch, B. A., Macek, K. J., Merry, T., Metcalf III, C. A., Narula, S. S., Sawyer, T. K., Shakespeare, W. C., Violette, S. M., and Weigele, M., X-ray structure of citrate bound to Src SH2 leads to a high-affinity, bone-targeted Src SH2 inhibitor. J. Med. Cnem., 44, 660-663 (2001) https://doi.org/10.1021/jm0002681
  2. Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R. C., and Kraut, J., Crystal structures of Escherichia coli and Lactobacillus cesei dihydrofolate reductase refined at 1.7 resolution. J. Biol. Chem., 257(22), 13650-13662 (1982)
  3. Bruice, P. Y., Organic Chemistry (fourth eds). Prentice Hall, New Jersey, (1995)
  4. Bystroff, C., Oatley, S. J., and Kraut, J., Crystal structures of Escherichia coli dihydrofolate reductase: the NADP+ holoen-zyme and the folate NADP+ ternary complex: Substrate binoing and a model for the transition state. Biochemistry, 29, 3263-3277 (1990) https://doi.org/10.1021/bi00465a018
  5. Cody, V., Luft, J. R., Ciszak, E., Kalman, T. I., and Freisham, J. H., Crystal structure determination at 2.3 of recombinant hur Jar dihydrofolate reductase ternary complex with NADPH and methotrexate--tetrazole. Anticancer Drug Design, 7, 483-491 (1992)
  6. Cody, V. Wojtczak, A., Kalman, T. I., Freisham, J. H., and Blakley, R. L., Conformational analysis of human dihydrofolate reductase inhibitor complexes: Crystal structure determiration of wild type and F31 mutant binary and ternary inhibitor complexes. Ayling, J. E., Nair, M. G. and Baugh, C. M. (Eds.), In Chemistry and Biology of Pteridines and Folates. Plenum Press, New York, pp. 48-486, (1993)
  7. Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Deyraj, R., Queener, S. F., and Blakley, R. L., Comparison of ternary complexes of Pneumocystis carinii and wild type human dihydrofolate reductase with coenzyme NADPH and arovel classical antitumor furo[2,3-d]pyrimidine antifolate. Acia Crystallographica, D53, 638 (1997)
  8. Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Blakley, R L., and Gangjee, A., Comparison of ternary crystal complexes of F3 i variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine. Anticancer Drug Des., 13, 307-315 (1998)
  9. Cocco, L., Roth, B., Temple, C. Jr., Montgomery, J. A., London, R. E., and Blakley, R. L., Protonated state of methotrexate, trirethoprirn, and pyrimethamine bound to dihydrofolate reeucase. Arch. Biochem. Biophys., 226, 567-577 (1983) https://doi.org/10.1016/0003-9861(83)90326-0
  10. Fierke, C. A., Johnson, K. A., and Benkovic, S. J., Construction and evaluation of the kinetics scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry, 26 4085-4092 (1987) https://doi.org/10.1021/bi00387a052
  11. Foye W. O., Banijamali, A. R. and Patarapanich, C., Synthesis and antimicrobial activities of $N^{4}$-2-acetoxyethoxymethyl) thiose nlcarbazones and $N^{3}$-(2-acetoxyethoxymethyl) thioureas. J. Pharm. Sci., 75, 1180-1184 (1986) https://doi.org/10.1002/jps.2600751213
  12. Foye W. O., Dabade, S. V., Kelly, C. J., Lebrun, E., and van Rapenbusch, R., Synthesis and dihydrofolate reductase inhibitory activity of N4-2-L glutaryl-N1-heteroaryl thiosemica bazones. Med. Chem. Res., 8, 542-553 (1998)
  13. Gokhale, V. M., and Kulkarni, V. M., Selectivity analysis of 5-(arylttlio)-2,4-diaminoquinazolines as inhibitors of Candida albicans dihydrofolate reductase by molecular dynamics siroulations. J. Comput. Aided Mol., Des. 14, 495-500 (2000) https://doi.org/10.1023/A:1008189724803
  14. Graffner-Nordberg, M., Marelius, J., Ohlsson, S., Persson, A., Swecberg, G., Anderson, P., Andersson, S. E., Aqvist, J., and Hallberg, A., Computational predictions of binding affinities to dihydrofolate reductase: Synthesis and biological evaluation of methotrexate analogues. J. Med. Chem., 43, 9852-3861 (2000)
  15. Jacques, S. L., Ejim, L. J., and Wright, G. D., Homoserine dehy-drogenase from Saccharomyces cerevisiae: Kinetic mechanism and stereochemistry of hydride transfer. Biochim. Biophys. Acta, 1544, 42-54 (2001) https://doi.org/10.1016/S0167-4838(00)00202-8
  16. Lebrun, E., Tu, Y. X., van Rapenbusch, R., Banijamali, A. R., and Foye, W. O., Inhibition of bovine dihydrofolate reductase and enhancement of methotrexate sensitivity by $N^{4}$-(2-acetoxyethoxymethyl)-2-acetylpyridine thiosemicarbazone. Biochim. Biophys. Acta., 1034, 81-85 (1990) https://doi.org/10.1016/0304-4165(90)90156-Q
  17. McMartin, C., and Bohacek, R. S., QXP: Powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des., 11, 333-344 (1997) https://doi.org/10.1023/A:1007907728892
  18. Meiering, E. M., and Wagner, G., Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH. J. Mol. BioI., 247, 294-308 (1995a) https://doi.org/10.1006/jmbi.1994.0140
  19. Meiering, E. M., Li, H., Delcamp, T. J., Freisheim, J. H., and Wagner, G., Contributions of tryptophan 24 and glutamate 30 to binding long-lived water molecules in the ternary complex of human dihydrofolate reductase with methotrexate and NADPH studied by site-directed mutagenesis and nuclear magnetic resonance spectroscopy. J. Mol. Biol., 247, 309-325 (1995b) https://doi.org/10.1006/jmbi.1994.0141
  20. Metcalf III, C. A., Eyermann, C. J., Bohacek, R. S., Haraldson, C. A., Varkhedkar, V. M., Lynch, B. A., Bartlett, C., Violette, S. M., and Sawyer, T. K., Structure-based design and solidphase parallel synthesis of phosphorylated nonpeptides to explore hydrophobic binding at the src SH2 (Src SH2) domain. J. Comb. Chem., 2, 305-313 (2000) https://doi.org/10.1021/cc990074a
  21. Sawaya, M., and Kraut, J., Loop and subdomain movements in the mechanism of escherichia coli dihydrofolate reductase: Crystallographic evidence. Biochemistry, 36, 586-603 (1997) https://doi.org/10.1021/bi962337c
  22. Schweitzer, B. I., Dicker, A. P., and Bertino, J. R., Dihydrofolate reductase as a therapeutic target. FASEB J., 4, 2441-2452 (1990) https://doi.org/10.1096/fasebj.4.8.2185970
  23. Shakespeare, W., Yang, M., Bohacek, R., Cerasoli, F., Stebbins, K., Sundaramoorthi, R., Azimioara, M., Vu, C., Pradeepan, S., Metcalf III, C., Haraldson, C., Merry, T., Dalgamo, D., Narula, S., Hatada, M., Lu, X., van Schravendijk, M. R, Adams, S., Violette, S., Smith, J., Guan, W, Bartlett, C., Herson, J., Luliucci, J., Weigele, M., and Sawyer, T., Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity. Proc. Natl. Acad. Sci., 97, 9373-9378 (2000) https://doi.org/10.1073/pnas.97.17.9373
  24. Stilz, H. U., Guba, W., Jablonka, B., Just, M., Klingler, O., Konig, W, Wehner, V., and Zoller, G., Discovery of an orally active non-peptide fibrinogen receptor antagonist based on the hydantoin scaffold. J. Med. Chem., 44, 1158-1176 (2001) https://doi.org/10.1021/jm001068s
  25. Vu, C. B., Corpuz, E. G., Merry, T. J., Pradeepan, S. G., Bartlett, C., Bohacek, R. S., Botfield, M. C., Eyermann, C. J., Lynch, B. A, MacNeil, I. A., Ram, M. K., van Schravendijk, M. R., Violette, S., and Sawyer, T. K., Discovery of potent and selective SH2 inhibitors of the tyrosine kinase ZAP-70. J. Med. Chem., 42, 4088-4098 (1999) https://doi.org/10.1021/jm990229t
  26. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Algona, C., Profeta, S., and Weiner, P., A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., 106, 765-784 (1984) https://doi.org/10.1021/ja00315a051
  27. Whitlow, M., Howard, A. J., Stewart, D., Hardman, K. D., Kuyper, L. F., Baccanari, D. P., Fling, M. E., and Tansik, R. L., X-ray crystallographic studies of Candida albicans dihydrofolate reductase: High resolution structures of the holoenzyme and an inhibited ternary complex. J. Biol. Chem., 48, 30289-30298 (1997)