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ON A CENTRAL LIMIT THEOREM FOR

A STATIONARY MULTIVARIATE LINEAR
PROCESS GENERATED BY LINEARLY POSITIVE
QUADRANT DEPENDENT RANDOM VECTORS

TAE-SUNG KIM

ABSTRACT. For a stationary multivariate linear process of the form
o0

X: = ZAthﬁj, where {Z: : ¢ = 0,£1,%+2,---} is a sequence
j=0

of stationary linearly positive quadrant dependent m-dimensional

random vectors with E(Z;) = O and E||Z||*> < oo, we prove a

central limit theorem.

1. Introduction

Lehmman [8] introduced a simple and natural definition of positive
dependence : A sequence {Y; : t = 0,1,2,---} of random variables is
said to be pairwise positive quadrant dependent (pairwise PQD) if for
any real a;, o and ¢ # j P{Y; > a;,Y; > a;} > P{Y; > oy} P{Y; >
aj}. A concept stronger than PQD was introduced by Newman [10]: A
sequence {Y;} of random variables is said to be linearly positive quadrant
dependent (LPQD) if for any disjoint A, B and positive r;-s, ZnY} and

€A
> “r;Y; are PQD.
JEB

Two m-variate random vectors Z,, Zs are said to be positive quadrant
dependent (PQD) if Zy;, Zyj are PQD for all 4,5 = 1, - - -, m, where Zy;,
Z3; are components of Z1, Zy, respectively.
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Let (Z1, Z3, - - -, Z) be m-variate random vectors. We say that (Zy,
Zs, - -+, Zy) is linearly positive quadrant dependent if for any disjoint A,
B c {1,--- ,t} and for any real vectors a, with nonnegative components,

(1) ZasZs and ZarZ,_ are PQD.
s€A reB

Let {X;,t =0,%1,--- } be an m-variate linear process of the form

o ¢]
(2) Xe=> Ao

u=0

defined on a probability space (2, F, P), where {Z;} is a sequence of
stationary m-variate LPQD random vectors with EZ; = O, E||Z||?> < oo
and positive definite covariance matrix I'yxym. Throughout this paper
we shall assume that

o0 o0
(3) > Nl Aull < 00 and Y Ay # Omxm,
u=0 u=0

where for any m x m, m > 1, matrix 4 = (ay;), |4| = sziﬂ and
i=1j=1
Oxm denotes the m x m zero matrix. Further, let

o0 x '
T Z‘Aj r ZOAj ,
p

J=0

where the prime denotes transpose, and the matrix I' = [o;] with
[o o]

4) ok = E(ZixZ15) + Z (ZwZy;) + E(Z15Z4)) .
=2

n
Further, let S, = ¥ X, (n > 0;So = 0).
t=1
Fakhre-Zakeri and Lee [4] proved a central limit theorem for multi-
variate linear processes generated by independent multivariate random
vectors and Fakhre-Zakeri and Lee [5] also derived a functional central
limit theorem for multivariate linear processes generated by multivariate
random vectors with martingale difference sequence.
In this note we prove a central limit theorem for an m-variate linear
process generated by m-variate LPQD random vectors.
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THEOREM 1.1. Let {Z;,t = 0,%1,-- -} be a strictly stationary LPQD
sequence of m-dimensional random vectors with E(Z;) = O, E||Z:||? <
oo and positive definite covariance matrix I' as in (4). Let {X;} be an
m-variate linear process defined as in (2). Assume that

o m

(5) E|Z:|?+2) Y E(Z1Zu) = 0* < o0,
=2 i=1

oC
(6) Z E|Z1:Zy|| = O(n™") for some p >0,
t=n+1
and
(7) E|Z:||° < o0 for some s> 2.

Then, the multivariate linear process {X;} fulfills the central limit the-
orem, that is, n”2S, — N(O,T).

REMARK. For m = 1, Kim and Baek [7] showed that the central limit
theorem holds for the linear processes generated by an LPQD process.

2. Proofs

Note that Newman [10] has proved the central limit theorem for
LPQD random variables (see Theorem 12 of [10]). Thus by means of
the simple device due to Cramer Wold the following result holds.

LEMMA 2.1. Let {Z:} be a sequence of stationary LPQD m-variate
random vectors with E(Z;) = Q and E||Z||*> < oo. If (5) holds then

n"3Y Z, 2> N(O,T),
t=1

where I' = [oy;] is defined as in (4); that is, {Z.} satisfies the central
limit theorem.

LEMMA 2.2. Let {Z:} be a sequence of stationary LPQD random

vectors with E(Z;) = O, E||Z|*> < co. Let X; = (ZA]-)Zt and S, =
=0
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k
Zfik Assume that (5), (6) and (7) hold. Then

t=1
_1
(8) n": max ISk — Skl = op(1).
Proof. See Appendix. O
oo
Proof of Theorem 1.1. As in Lemma 2.2, set X; = (ZAj)Zt and
j=0

n
S, = ZXt. First note that

t=1
ElXi)?+2) > B(XuXu)
t=2 i=1
o0
(9) = O_A)AEIZ.? + 222}5 Z1: 7).
j=1 t=2 i=1

Since X, is LPQD, by Lemma 2.1 {X,} satisfies the central limit theorem,
that is,

(10) n~2§, 2 N(O,T).

According to Lemma 2.2 we also have

(11) n~2(S, — Suf = op(1).

Hence from (10) and (11) the desired conclusion follows by Theorem 4.1

of [1]. O
Appendix

Proof of Lemma 2.2. We prove Lemma 2.2 using the ideas in the
proof of Lemma 3 of [5] and Lemma 2 of [7]. First observe that

an > E(X’uXti)=(§:A Z ZE Z12y) = O(n™")

t=n+1 =0 t=n+1 i=1
and that

o
(A2) ElXel* = (3" 4 °ElZ¢|* < 0o for some s> 2.
§=0
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By Lemma 3 of [7], it follows from (A.1) and (A.2) that

A. E Xi 4+ 4+ Xi|") > Bn3
(A.3) (lgllffnﬂ 1+ +Xg|") > Bnz

for some r > 2 and a constant B.
Next, we observe that

ko k-t k 0
Sko= D DA Z+d | Y Az
t=1 \ j=0 t=1 \j=k-t+1
k t—1 k 00
= D\ AT |+ X AT
t=1 \j=0 t=1 \j=k—t+1
and thus
_ k oo k [e'e}
Sk=Sk = =).3 AZ;+Y | D 4|z
t=1 j=t t=1 \j=k—t+1
= I, + I, (say).
To prove
(A.4) n"% max ||| = O,

1<k<n

we observe that for r > 2
™

k 00
_r
n~ 2 F max E E Aj Ly
1<k<n £
t=1 4=t
oo Ak "
= n~2 F max _5_ Aj Ly
1<k<n
Jj=1 t=1
1 T
Gk Ty r

IA
3I
[V

o0
"4l { B max
=1 1<k<n

> Zey
t=1

r

IA

> i Ak 2
J
K|S sl (228
i=1

for some positive constant K, where we have used Lemma 2 in [7] for
LPQD random variables. By the dominated convergence theorem the
last term above tends to zero as n — oo from which (A4) follows.
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Next, we show that

_1
(4.5) nd max Ll = o).

Write
Iy = Iy, + I35, where
Iy = A1Z + Ao(Zp + Zi—1) + -+ + Ap(Zy + - - - + Zy)
and
I = (Aps1+ Agr2 +-7) (Ze +-+- + 7).

Let p,, be a sequence of positive integers such that

(A.6) pn —oo and p,/n —0 as n — 0.
Note that
1 haid 1
—_= < . -3 oo
n% max [ T22] < (; ”Az“> n": max |Z1+ - + Zg)

-1
+ (Z umu) nh mex |+ o+ Zil

i>pn
= III + IV (say).
It follows from (3) and (A.6) that for some r > 2

o0 T
1 < (Z nAin) Bi(pa/n) 5 0
1=0

and

i>ppn

v < ZnAin) By -5 0,

by Lemma 2 of [7]. It remains to prove that

1
r=n"z2 I = 1).
Yo nT2 max [L21]] = op(1)

To this end, define for each { > 1
Iny = B1Zy + Bo(Zy + Zgy1) + -+ - + Be(Zg + - - - + Z1),

where

(A k<l
B’“‘{ Omxms k> 1.
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Let Yn,; = n"3 maxi<k<n |21, Clearly, for each I > 1,
(A7) Yo = op(1).
On the other hand,

k
(Yo —Yn) < n"% ax Z(Ai —B) (Zk+ -+ + Zg—it1)
k‘ - i=1
Sn_% lg}casxn (zzlz-i-l 4 lrgag; “Zk+m+Zk_i+1“>
<n? ZI lAll max max (121 + -+ Zil + 122+ o+ 2l
1
<nb 2; il (max 122+ + Z

+ max max |[|Z1 + -+ Zg—|)
l<k<n I<ikn

1

<n"z . . .

<n72 §'>l Il Al (gjasxnllzﬁ +Zg||+1rSn,3§<nIIZ1+ +ZJ”)
1

1
. : i+ -+ 7]l
2n72 1§>l [l As]l Joax |Zy + - - + Zj]|

From this result and Lemma 2 of [7], for any § > 0,

lim lim sup P(|Y; — Y.|> > 8)
l— 00 N—00

.
< lim 27677 A; lim ™% max [|Z;+---+Z;|
(a8) im (Z” ”) Jmn7E o a4 240

1>l
T
<B lim 67 "2" ; =0.
<B lim §772 (Z lIz‘hll) 0
>l
In view of (A.7) and (A.8), it follows from Theorem 4.2 of [1, p.25] that
Y, = op(1). This completes the proof of Lemma 2.2. O
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