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ON ENTIRE RATIONAL MAPS OF REAL SURFACES

YILDIRAY OZAN

ABSTRACT. In this paper, we define for a component Xy of a non-
singular compact real algebraic surface X the complex genus of
Xo, denoted by gc(Xo), and use this to prove the nonexistence of
nonzero degree entire rational maps f : Xo — Y provided that
g9c(Y) > gc(Xo), analogously to the topological category. We con-
struct connected real surfaces of arbitrary topological genus with
zero complex genus.

1. Introduction and results

It follows from Poincaré duality that there exists a continuous map
of nonzero degree f : F; — Fj, between closed connected orientable
surfaces Fy and Fy, if and only if g(F1) > g(Fy), where g(F;), i = 1,2
denotes the genus of F; (see [11, Theorem 14.1 (6)]). However, this is
not the case in the category of real algebraic surfaces and entire rational
maps: In [17] Loday showed that any entire rational map f : S* x St —
52 is homotopic to a constant map, where S™ denotes the standard
sphere in R**1, using algebraic K-theory.

Bochnak and Kucharz extensively studied entire rational maps from
algebraic varieties into standard spheres and Grassmann varieties mak-
ing use of algebraic K-theory and the group H{_ 4 g(X ,Z) introduced
by them ([4, 6, 7, 8, 9, 10]). The author gave another proof of Loday’s
result observing that S x S! bounds in its complexification whereas S2
does not ([18]).

For an orientable connected component, X, of a nonsingular compact
real algebraic surface X define the complex genus of Xy, denoted by
9c(Xop), as the greatest integer g such that there exits a continuous
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map of nonzero degree, ¢ : Xg — Fy, to an orientable closed connected
surface of genus g, where the kernel of the induced homomorphism

¢y : m1(Xo,p) — m(Fy, ¢(p))
contains that of

Zﬁ : WI(XO,P) - WI(XCaZ'(p))
where p € Xp and i : X — X¢ is any complexification. Obviously, the
topological genus of Xg, g(Xp), is an upper bound for gc(Xjp).

For real algebraic varieties X CR" and Y CR*amap F: X — Y is
said to be entire rational if there exist f;, g; € R[zy,...,z,]),i=1,...,s,
such that each g; vanishes nowhere on X and F = (fi/g1,..., fs/gs)-
We say X and Y are (entire rationally) isomorphic if there are entire
rational maps F : X — Y and G: Y — X such that F o G = idy and
G o F = idx. Isomorphic algebraic varieties will be regarded the same.

REMARK 1.1. Let X be a connected component of a compact non-
singular real algebraic variety X.

(i) Since birationally isomorphic complex projective varieties have iso-
morphic fundamental groups (cf. see [14, p.494]) the homomor-
phism

iy : m1(Xo) — m(Xc)
is determined only by X up to an (entire rational) isomorphism.
Hence, if X is a surface then gc(Xo) is a well defined invariant of X.
In other words, if f : X — Y is an (entire rational) isomorphism
then fy(ker(iy)) = ker(jy), where ¢y : X — X¢ and jy : Y — Y are
some complexifications.

(ii) Just like in the case of 71, the kernel of the homomorphism

iy = m2(Xo) — m(Xc)

is an (entire rational) isomorphism invariant of X.

To see this let 77 : X — Z; and i3 : X — Z3 be two complex-
ifications. Then Z; and Z, are birationally isomorphic by some
map ¢ : Z1 — Zy, which is regular on X and defined off a complex
codimension two subvariety. Now if a homotopy class, represented
by a smooth map « : §2 — Xj, is trivial in Z;, then we can move
the 3-disk bounding « off the real codimension four indeterminacy
set of ¢, so that « bounds the 3-disk in Z3 also.

(iii) Let X be a surface. Suppose that gc(Xo) > 1 and let ¢ : Xog — Fy
be a continuous map of nonzero degree to an orientable closed
connected surface of genus g = g¢(Xp), where the kernel of the
induced homomorphism on 7 contains that of 4y : m1(Xo) —
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m(Xc), and ¢ : X — X¢ is any complexification. Now, if g > 1
then ¢y : m(Xo) — mi(Fy) is onto because ¢ has nonzero de-
gree and g = gc(Xp) is maximal with this property. For, since ¢
has nonzero degree the index [m(Fy) : ¢y(m1(Xo))] is finite. On
the other hand, if this index larger than one then ¢ lifts to a fi-
nite covering Fy, — Fy with h > g (indeed h —1 = [m(Fy) :
#y(m1(Xo))] (9 — 1)) corresponding to the subgroup ¢y(m(Xo)) <
m1(Fg). However, this contradicts the maximality of g.

If g = 1 then ¢y : m1(Xo) — m1(F,) is not necessarily onto.
However, again the index [m1(Fy) : ¢y4(m1(Xo))] is finite and thus
passing to a finite cover of the torus we may assume that ¢y :
m1(Xo) — m1(F,) is onto.

For the rest of paper we will assume that all connected spaces are
pointed spaces and we will write simply fy : 71(M) — m(N) instead of

fi:m (M, p) — m(N, f(p))

for any continuous map f: M — N.
Here is an application of this invariant.

THEOREM 1.2. Let X and Y be nonsingular compact real algebraic
surfaces, where the latter is assumed to be connected and orientable.
Then for any orientable connected component Xo of X with gc(Y) >
gc(Xo) and any entire rational map f : X — Y, the restriction map
fixo : Xo — Y has degree zero. Indeed the same holds for any rational
map f: X — Y which is entire on X.

Part (i) of Remark 1.1 enables us to define another invariant of X:
The homomorphism

ip : m1(Xo) — m(Xc)

is determined only by X up to an isomorphism and hence so does the
image of the homomorphism

i* . HY(X¢,Z) — HY{(X,,Z)

which we will denote by ImH!(Xy,Z). Consider the restriction of the
cup product pairing on H*(Xp, Z) to the subgroup ImH'(Xg,Z). Then
the rank of the restricted pairing, denoted by r¢(X), is also an isomor-
phism invariant of Xy. rc(X) is always an even integer since the form
is skew symmetric. (It is known that ImH?*(X,Z) is an isomorphism
invariant of any orientable nonsingular real algebraic variety, [19].)
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If f : 4 — F5 is a continuous map of nonzero degree between closed
orientable surfaces then the induced map on cohomology rings is injec-
tive. Hence, we obtain:

THEOREM 1.3. Let X and Y be nonsingular compact real algebraic
surfaces, where the latter is assumed to be connected and orientable.
Then for any orientable connected component Xo of X with rc(Y) >
rc(Xo) and any entire rational map f : X — Y, the restriction map
fix,  Xo — Y has degree zero. Indeed the same holds for any rational
map f: X — Y which is entire on Xj.

REMARK 1.4. The converses of the above theorems do not hold: Let
a and B be any two positive real numbers so that the product af is
irrational. Then by Remark 13.3.15 of [5] there exist nonsingular real
connected elliptic curves D, and Dg in RP? such that any entire ra-
tional map from D, X Dg to the standard sphere S 2 is null homotopic.
However, since a connected nonsingular real elliptic curve cannot be
nullhomologous in its complexification the inclusion map

1: Dy XDﬂ — DQC X DﬂC = (Da X Dﬁ)c

induces an injection on fundamental groups and therefore both gc(Dq X
Dg) and r¢(Dqo x Dg) are equal one.

The result below is a partial converse to Theorem 1.3.

THEOREM 1.5. Let X be a nonsingular compact real algebraic sur-
face. Then X admits an entire rational map f : X — A to some complex
abelian variety A (regarded as a real variety), such that the induced
homomorphism f, : Ho(X,Z) — Ha(A,Z) is nontrivial if and only if X
has an orientable connected component Xg with r¢(Xg) > 2.

By the method of proof of the above theorem, in general A has di-
mension larger than one.

For a product of two nonsingular real algebraic curves we get the
following immediate corollary of the above theorem. (Compare with [6].)

COROLLARY 1.6. Let X be the product, X7 X X5, of two connected
compact nonsingular real algebraic curves. Then the following condi-
tions are equivalent:
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(i) There exists an entire rational map f : X — A to some complex
abelian variety (regarded as a real variety), such that the homology
class f*([Xl X Xg]) #0;

(ii) ’r'(c(Xl X X2) = 2,‘

(iii) Both X, and Xy are homologously nontrivial in their complexifi-
cations.

COROLLARY 1.7. Let Xy be an oriented connected component of a
nonsingular compact real algebraic surface X. Then, if f: F — X¢ is a
continuous map from an oriented closed surface to some complexification
Xc of X so that fi([F]) = [Xo] then

o(F) 2 5re(Xo),

where g(F') denotes the genus of F.

The proof of the above corollary is just standard algebraic topology
and is given in the next section for the sake of completeness. The point
is that the inequality

o(F) 2 57e(Xo)

holds no matter what the complexification X¢ is.
The two invariants rc(Xp) and gc(Xo) are related as follows.

ProrosITION 1.8. Let Xy be an oriented connected component of
a nonsingular compact real algebraic surface X. If r¢c(Xo) > 0 then

QC(XO) > 0.

The converse of the above proposition is not correct as the example
below shows:

ExampPLE 1.9. First we would like to construct a compact connected
nonsingular real algebraic curve Y such that Y¢ —Y is disconnected but
none of the components is a disc. To do this let S be a closed orientable
surface of genus 2 and C C S is a simple closed curve such that § — C
is the disjoint union of two tori with boundary.

Consider the reflection map r : § — S across the circle C. The
fixed point set of r is C. Now, put a Riemannian metric g on S such
that r is an isometry. If w is the volume form associated to the metric
g then r*(w) = —w, because r is orientation reversing. The metric and
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Figure 1.

the volume form defines an almost complex structure J on the tangent
bundle 7,5 by the formula

9(u,v) = w(u, J(v))

for any u,v € Tp(S), and p € S. Moreover, we have dr o J = —J odr,
where dr is the differential of . Since any almost complex structure
on a closed orientable two manifold is integrable we can regard S as a
Riemann surface, and hence as a complex algebraic curve. Moreover, r
becomes an anti holomorphic involution of S (see [13, p.43]).

We can embed S into a complex projective space such that r» becomes
the restriction of the complex conjugation and C its fixed point set; i.e.,
the real part (see [16, Sections 1 and 2]). Now choose Y as the image of
C under this embedding.

Using different methods (perturbation of real curves), one may obtain
a concrete example of such a curve blowing up of the singular point,
which is the origin, of the plane curve given by the equation z*+ y* +
3x2y? — 322 — 42 = 0.

Let X =Y xY. Then X¢ may be taken as Yo X Y. Now the
inclusion map ¢ : X — X¢ induces an injection #4 : 71 (X) — m1(Xc) on
fundamental groups and the trivial homomorphism * : H(X¢, Z) —
H'(X,Z) on first cohomology. Hence, rc(X) = 0 whereas gc(X) = 1.

REMARK 1.10. If V' is a compact nonsingular complex algebraic vari-
ety, then we can view V as a real algebraic variety which we will denote
by Vg. Indeed, Vg is just the fixed point set of the anti holomorphic
involution ¢ : V x V — V x V given by o(z,y) = (§,%), where V is
the complex conjugate of V. It is well known that there is a complex
algebraic subvariety Z of some projective space CPY defined by real
polynomials which is biregularly isomorphic to V' x V. Moreover, the
real part Z N RPY is isomorphic to Vg. However, any projective real
algebraic variety is affine ([5, Proposition 3.4.4]) and hence Vg can be
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viewed as an affine real algebraic variety. For more details, we refer the
reader to Sections 1 and 2 of [16].

If C is a nonsingular complex projective curve regarded as a real
algebraic surface then by the above discussion we may take i : V —
V xV, z — (z,%) as a complexification. If 7 : V x V — V is the
projection onto the first factor then woi: V — V is the identity map
and hence the ¢ induces an injective map on fundamental groups. Hence,
9c(C) = g(C) and rc(C) = 2¢(C), where g(C) denotes the topological
genus of C. In other words, if a surface is already complex then its
complex genus equals its topological genus. This implies the following
corollary.

COROLLARY 1.11. Let Xy be an oriented connected component of a
nonsingular compact real algebraic surface X and f : X — C an entire
rational map to a complex curve C of genus g. If f.([Xy]) € Ho(C,Z) is
not zero then gc(Xo) 2> g and r¢(Xo) > 29(C).

The following examples provide real surfaces with g(X) > g¢(X),
re(X).

EXAMPLE 1.12. Suppose X is a nonsingular compact real algebraic
variety of dimension n > 2. Further suppose that X has a complete
intersection complexification X¢; i.e., X¢ is a complete intersection in
some complex projective space. So this complexification is simply con-
nected and thus gc(Xo) = re(Xg) = 0 for any component Xj.

Combining the previous corollary with the above example we arrive
at the following corollary.

COROLLARY 1.13. Suppose that Xy is a connected component of a
real surface X, which has a complete intersection complexification, and
f + X — C is an entire rational map to some smooth complex projective
curve (regarded as a real variety) such that the class f,([Xy]) € Ho(C,Z)
is not zero. Then, C = CP!.

The above corollary can be proved by the results of Bochnak and
Kucharz making use the group H¢._,;, (X, Z), the cohomology subgroup
of X generated by the pull backs of the complex algebraic cycles of its
complexification ([4, 5, 8]).
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ExXAMPLE 1.14. The following theorem which is a direct consequence
of Theorem 2.8.4 of [1], whose weaker form is originally proved by
Benedetti and Tognoli ([2]), also provides surfaces with arbitrary topo-
logical genus but trivial gc and r¢

THEOREM 1.15. [1] Let L C M C R* where L is a nonsingular real
algebraic variety and M an embedded closed smooth manifold. Then
there is a smooth embedding g : M — R* x R such that X = g(M) is
a nonsingular real algebraic variety with g(x) = x, for all x € L, if and
only if the normal bundle Nj;(L) of L in M has a strongly algebraic
structure.

Let g be any positive integer and F C R? a closed orientable smooth
surface of genus g such that F' contains g embedded disjoint circles
ai,...,ay with the following properties:

(i) Each a; is a nonsingular real algebraic curve which is homologously

trivial in its complexification;
(i) The set {a1,...,aq} is part of a basis for Hi(X, Z).

Figure 2.

Using the above theorem we can isotop F' to an algebraic surface X,
maybe in some larger Euclidean space, keeping each a; fixed. (Note that
the normal bundle of each a; is trivial and thus has a strongly algebraic
structure.)

Since a; homologously trivial in its complexification ImH?(Xg,Z)
does not contain a pair with nontrivial cup product. Hence, r¢(X) = 0.

Now assume further that each a; is entire rationally isomorphic to the
standard circle St = {(z,y) € R? | 22 +y? = 1}. Since, S bounds (a 2-
disc) in its complexification S = S? by the above argument r¢(X) = 0.
Below, we will show that g¢(X) is also zero.

Let ¢ : X — Fy be a continuous map of nonzero degree to an ori-
entable closed connected surface of genus ¢’ = g¢(X), where the kernel of
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the induced homomorphism on 7, contains that of 4 : 71(X) — 71 (Xc),
i : X — Xc being any complexification. S bounds a 2-disc in its com-
plexification Sé = 5?2 and therefore the map ¢ factors through the 2-
complex, say K, obtained by gluing a 2-disc to X along each a; (for
example we may take one of the disc components of S{ = §2 — §1):

X—*K—%Fgl.

If ¢’ were positive then there would be cohomology classes a, b € H 1(Fg/,
Z) with nonzero cup product, and since ¢ has nonzero degree, pull backs
of these classes would have nonzero cup product in X and thus in K.
However, cohomology of K is generated by the duals (in the sense of
Universal Coefficient Theorem) of b;’s and their cup products are clearly
trivial.

In the last section we will make use of group homology to prove that
gc(X) =0.

2. Proofs

All real algebraic varieties under consideration in this report are com-
pact and nonsingular. It is well known that real projective varieties are
affine ({1, Proposition 2.4.1] or {5, Theorem 3.4.4]). Moreover, compact
affine real algebraic varieties are projective ([1, Corollary 2.5.14]) and
therefore, we will not distinguish between compact real affine varieties
and real projective varieties.

A complexification X¢ € CPY of X will mean that X is embedded
into some projective space RPY and X¢ € CPY is the complexification
of the pair X C RPY. We also require the complexification to be non-
singular (blow up Xc¢ along smooth centers away from X defined over
reals if necessary, [15, 3]). We refer the reader for the basic definitions
and facts about real algebraic geometry to [1, 5].

Proof of Theorem 1.2. Let f : X — Y be an entire rational map
and ¢; and gy denote gc(Xg) and gc(Y) respectively. Suppose that
¢: Xg— Fy and ¥ : Y — Fy are some continuous maps of nonzero
degree to orientable closed connected surfaces of genus g;, i = 1,2, where
the kernel of the induced homomorphisms

(f)u :7T1(X0)—>7T1(F1) and 1/)11 :7T1(Y) —>’/T1(F2)

contains those of

iy : 71 (Xo) = m(Xe) and  gy:m(Y) - m(Ye)
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respectively, where p € Xy is any point, ¢ = f(p) and i : X — X¢ and
j: Y — Y¢ are some complexifications such that f : X — Y extends to
fc: Xec - Y.

Consider the composition map ¥ o f : Xo — F» and the induced
homomorphism ¢y o fy : m1(Xo) — m1(Fy). Since fc : X¢ — Y extends
f : X — Y the homomorphism ¢y o fj factors through the image of
iy : m(Xo) — m1(Xc). Hence, the kernel of ¢y o fy contains that of 7.
By the hypothesis we have g1 < go and therefore the degree of ¢ o f
must be zero. This finishes the proof because the degree of 1) is nonzero.

For the second statement the above proof works fine except we may
have to blow up also some real points of X — X to get the regular map
fc: Xc — Y. O

Proof of Theorem 1.5. Suppose there is a component Xq with r¢(Xo)
> 2. Then there are cohomology classes a,b € H Y X¢,Z) with i*(a) U
i*(b) € H*(X,,Z) is nontrivial, where i : X — Xc is the inclusion map.
Let o : X¢ — A be the Albanese map of X¢ and f = aoi. The induced
homomorphism o* : H'(A,Z) — H*(Xc,Z) is an isomorphism and thus
there are classes a',b € H'(A,Z) with a = o*(a') and b = o*(b’) which
implies that fi([Xo]) = (@ 0 %)«[Xo] # 0.

Conversely, assume that there is an entire rational map f : X — A
into some complex abelian variety such that the induced homomorphism
fx : Hy(X,Z) — Hy(A,Z) is nontrivial. So, there is an orientable compo-
nent Xp of X with f.([Xo]) # 0. Since A is a torus there are cohomology
classes a,b € H'(A,Z) such that (f*(a) U f*(b))([Xo]) # 0. By Exam-
ple 1.10, the map j : A — A X A, j(p) = (p,p), is a complexification.
Clearly, j* : HY(Ax A,Z) — H'(A,Z) is onto and thus there are classes
o' b in HY (A x A,7Z) with j*(a’) = a and j*(¥') = b. Now by Hironaka’s
theorem ([15, 3]) we can extend f : X — A to some complexification

fc : Xc — A x A and obtain the following commutative diagrams:

x 1 A HY(X,Z) N HY(A,Z)

b

XC AXA Hl(Xc,Z) - HI(AXA,Z)
fc fe

Figure 3.
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Now by the commutativity of the second diagram f*(a) and f*(b) are
in ImH*'(Xg,Z). This finishes the proof. d

Proof of Corollary 1.7. Choose a set of linearly independent, over Q,
elements a1,bi,...,ax, by € H'(X¢,Q), where 2k = rc(Xp), such that
(ai U aj)([Xo]) = (bz U bJ)([Xo]) = 0 and (ai U bj)([Xo]) = 57;]' for all
,j =1,...,k. Now, if f: F — Xc¢ is a continuous map such that
f«([F]) = [Xo] then

fl<anbi|i=1,... k> HY(F,Q)

X
is injective, yielding that g(F) > k = r%l). (|

Proof of Proposition 1.8. Let rc(Xg) > 0. Then there are cohomol-
ogy classes ag,byp € ImH?'(Xp,Z) with ag U bg # 0. Let ap = i*(a)
and by = i*(b) for some classes a,b € H'(Xc,Z). Since we can view
H 1(XC,Z) as homotopy classes of continuous maps from X¢ to S*
there are continuous maps f, : X¢ — S and f, : Xc — S? so
that fi(c) = a and ff(c) = b where ¢ € H*(S!,Z) is a generator.
Let ¢ : Xo — S! x S' = T2 be given by the composition ¢(z) =
(fa(i(z)), fo(i(x)). Then, clearly ¢ has nonzero degree and the kernel
of ¢y : m1(Xp) — 71(T?) contains that of iy + m(Xo) — m(Xc). So
g9c(Xo) > 0. O

3. Example 1.14 revisited

For a connected CW-complex X we have the well known exact se-
quence

m9(X) — Ho( X,Z) — Ho(m(X),Z) — 0

giving Ha(m(X),Z) as the cokernel of the Hurewicz homomorphism
([12]).

Let X be the surface constructed in Example 1.14 and i : X — X¢
any complexification. Suppose that gc(X) > 0 and ¢ : X — F is
a nonzero degree map to a surface with g(F) = gc(X) such that the
kernel of the induced map on the fundamental groups, ¢y : m(X) —
m1(F), contains that of ¢4 : m1(X) — m1(X¢). Consider the commutative
diagram below:
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7T2(X)-——> HQ(X,Z) H2(7T1(X),Z) — 0

¢ﬁ ¢* ¢n

o (F) W

H2(F7 Z)
Figure 4.

H2(7T1(F),Z) —_— 0

where all the vertical maps are induced by the map ¢ : X — F.
Since the fundamental group of X is

<a17 b17 oo 7ag?b9 I [a17b1] t [ag7bg]>

where the bracket [a,b] denotes the commutator of a and b, and each a;
bounds a 2-disc in X¢ all a;’s are in the kernel of the homomorphism i :
m(X) — m(Xc) and thus of the homomorphism ¢y : 71(X) — 71 (F).
Hence ¢y : m(X) — w1(F) factors through the free group on g letters,
Frg = (b1,...,bg). However, second homology group of a free group is
trivial, because free groups admit bouquet of circles as classifying spaces.
Hence ¢y : Hy(m(X),Z) — Ha(m(F),Z) is trivial. Now, by the above
diagram the induced homomorphism ¢, : Ho(X,Z) — Ho(F,Z) is trivial
because m2(X) = ma(F) = 0. However, this contradicts the fact that ¢
has nonzero degree and thus gc(X) is zero as claimed.
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