Effect of Dissolved Oxygen Concentration and pH on the Mass Production of High Molecular Weight Pullulan by Aureobasidium pullulans

  • LEE, JI-HYUN (Division of Food and Biotechnology, Pukyong National University) ;
  • JEONG-HWA KIM (Division of Food and Biotechnology, Pukyong National University) ;
  • MI-RYUNG KIM (Division of Food and Biotechnology, Pukyong National University) ;
  • SUNG-MI LIM (Division of Food and Biotechnology, Pukyong National University) ;
  • SOO-WAN NAM (Department of Microbiology, Dong-Eui University) ;
  • JIN-WOO LEE (Faculty of Natural Resources and Life Science, Dong-A University) ;
  • SUNG-KOO KIM (Division of Food and Biotechnology, Pukyong National University)
  • Published : 2002.02.01

Abstract

The effects of DO and pH on the mass production of pullulan with high molecular weight and the morphology of A. pullulans ATCC 42023 were evaluated. A. pullulans showed a maximum production of pullulan (11.98 g/l) when the initial pH of the culture broth was 6.5 in a shake-flask culture. In a batch culture, the mixture of a yeast-like and mycelial cell forms was found at a pH of 4.5, and the maximum production of pullulan (13.31 g/l) was obtained. However, a high proportion of high molecular weight pullulan (M.W.>2,000,000) was produced at a pH of 6.5, with a yeast-like morphology. The maximum pullulan production yield ($51\%$) was obtained at a pH noncontrol (initial pH 6.5) and DO control (above $50\%$) condition. Pullulan degrading enzyme was activated when the pH of the broth was lower than 5.0 and the portion of low molecular weight pullulan was increased. The formation of a black pigment was observed at an initial stationary phase, at 40 h of fermentation. Therefore, the fermentation should be carried out in a pH noncontrol (initial pH of 6.5) and DO control (above $50\%$) condition, and should be harvested before reaching the stationary phase (around 40 h) for the production of high molecular weight pullulan.

Keywords

References

  1. World J. Microbiol. Biotechnol. v.10 Polysaccharide production by Aureobasidium pullulans: Factors affecting polysaccharide formation Badr-Eldin, S. M.;O. M. El-Tayeb;E. G. El-Masry;O. A. Mohamad;O. A. A. El-Rahman https://doi.org/10.1007/BF00144465
  2. J. Microbiol. Biotechnol. v.10 Optimization of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica Bae, J. T.;J. Sinha;J. P. Park;C. H. Dong;J. W. Yun
  3. Protein Methods(2nd ed.) Ammonium sulfate precipitatio Bollag, D. M.;M. D. Rozycki;S. T. Edelstein
  4. Enzyme Microb. Technol. v.14 Aureobasidium pullulans in applied microbiology: A status report Deshpande, M. S.;V. B. Rale;T. M. Lynch https://doi.org/10.1016/0141-0229(92)90122-5
  5. Carbohydr. Polym. v.27 Solubility, solution rheology and salt-induced gelation of welan polysaccharide in organic solvents Hember, M. W. N.;E. R. Morris https://doi.org/10.1016/0144-8617(95)00026-4
  6. Biotechnol. Lett. v.22 Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine Kim, J. H.;M. R. Kim;J. H. Lee;J. W. Lee;S. K. Kim https://doi.org/10.1023/A:1005681019573
  7. Fervidobacterium pennavrans Ven5. Appl. Environ. Microbiol. v.63 Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium Koch, R.;F. Cangannella;H. Hippe;K. D. Kahnke;G. Antranikian
  8. Biotechnol. Bioeng. v.27 Effect of pH on the batch fermentation of pullulan from sucrose medium Lacroix, C.;A. LeDuy;G. Noel;L. Choplin https://doi.org/10.1002/bit.260270216
  9. Can. J. Microbiol. v.43 Exopolymers from curdlan production: Incorporation of glucose-related sugars by Agrobacterium sp. Strain ATCC 31749 Lee, J. W.;W. G. Yeomans;A. L. Aqllen;D. S. Kaplan;F. Deng;R. A. Gross https://doi.org/10.1139/m97-020
  10. J. Biol. Chem. v.193 Protein measurement with the Folin phenol reagent Lowry, O.H.;N. J. Rosebrough;A. L. Farr;R. J. Randall
  11. Enzyme Microb. Technol. v.12 Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks McNeil, B.;B. Kristiansen https://doi.org/10.1016/0141-0229(90)90069-3
  12. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  13. Carbohydr. Polym. v.30 Conformational and rheological transitions of welan, rhamsan and acylated gellan Morris, E. R.;M. G. E. Gothard;M. W. N. Hember;C. E. Manning;G. Robinson https://doi.org/10.1016/S0144-8617(96)00059-8
  14. Eur. J. Pharm. Sci. v.9 Rheological studies of the gelation of deacetylated gellan gum in physiological conditions Paulsson, M.;H. Hagerstrom;K. Edsman https://doi.org/10.1016/S0928-0987(99)00051-2
  15. Appl. Environ. Microbiol. v.58 Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation Pollock, T. J.;L. Throne;R. W. Armentrout
  16. Eur. J. Appl. Microbiol. Biotechnol. v.17 Effect of ammonium ion concentration on polysaccharide production by Aureobasidium pullulans in batch culture Seviour, R. J.;B. Kristiansen https://doi.org/10.1007/BF00505885
  17. Kor. J. Appl. Microbiol. Biotechnol. v.19 Effect of pH on the elaboration of pullulan and the morphology of Aureobasidium pullulans Shin, Y. C.;S. M. Byun
  18. Kor. J. Appl. Microbiol. Biotechnol. v.23 Rheological properties of exopolysaccharide produced by Xanthomonas sp. EPS-1 Son, B. S.;S. K. Park;S. K. Kang;S. W. Lee;N. K. Sung
  19. Appl. Microbiol. v.11 Polysaccharide produced by the genus Pullularia Ueda, S.;K. Fujita;K. Komatsu;Z. Nakashima
  20. Biotechnol. Lett. v.13 Influence of dissolved oxygen by Aureobasidium pullulans Wecker, A.;U. Onken https://doi.org/10.1007/BF01025810
  21. J. Environ. Polym. Degrad. v.1 Control of molecular weight distribution of the biopolymer pullulan produced by Aureobasidium pullulans Wiley, B. J.;D. H. Ball;S. M. Arcidiacono;J. M. Mayer;D. L. Kaplan https://doi.org/10.1007/BF01457648
  22. Appl. Biochem. Biotechnol. v.74 Enhancement of pullulan production by Aureobasidium pullulans in batch culture using olive oil and sucrose as carbon sources Youssef, F.;C. G. Briliaderis;T. Roukas https://doi.org/10.1007/BF02786883