리그노셀룰로스계 폐기물을 이용한 Cellulase의 생산

Production of Cellulase from Lignocellulosic Waste.

  • 발행 : 2002.03.01

초록

본 연구에서는 cellulase를 보다 경제적으로 생산하기 위해 다양한 리그노셀룰로스계 폐기물 기질에 대해 cellulase 생산을 검토, 비교하였으며 가능성이 높은 기질에 대해 대량 생산 실험을 수행하였다. 폐 신문지는 0.2% NaOH를 사용하여 전처리한 경우 FPase와 CMCase의 최대활성이 각각 0.25 IU/mL, 4.6 IU/mL로 좋았으나, 폭쇄재 및 당화잔사 등 다른 기질의 최대활성인 0.6∼0.8 IU/mL, 5.5∼6.5 IU/mL에 비해 매우 낮았다. 30 L 발효기를 이용한 cellulase 생산 실험에서 FPase 최대활성은 lactose와 폭쇄재에서 각각 0.75 IU/mL, 0.72 IU/mL로서 당화 잔사의 최대 활성인 0.58 IU/mL에 비해 30% 높았으나 CMCase는 당화 잔사에서 최대활성이 6.3 IU/mL로 폭쇄재를 기질로 하였을 때 보다 15%높았다.

Lignocellulosic wastes available in abundance can be excellent substrates for the production of cellulase. Different types of substrates and various pretreatments were used to improve the production of cellulase. The steam-exploded wood chip gave the highest activities of FPase (0.84 IU/mL) and CMCase (6.5 IU/mL) in the shake-flask culture. In 30 L bioreactor the steam-exploded wood chip and residue after saccharification gave the FPase activity (0.72 IU/mL) and the CMCase activity (6.3 IU/mL), respectively, similar those obtained in lactose.

키워드

참고문헌

  1. Torget, R, M. Himmel, J. D. Wright, and K. Grohmann. 1988. Initial design of a dilute sulfuric acid pretreatment process for aspen wood chips. Appl. Biochem. Biotechnol. 17: 89-104.
  2. Montenecourt, B. S. and D. E. Eveleigh. 1979. Selective screening methods for the isolationof high yielding cellulase mutants of T reesei. Adv. Chem. Ser. 181: 289-301.
  3. Allen, A. L. and C. D. Roche. 1989.Effects of strain and fermentation conditions on productionof cellulase by T reesei. Biotechnol. Bioeng. 33: 650-656.
  4. Janbon, G., A. Arnaud, and P. Galzy. 1994. Selection and study of a Candida molischiana mutant derepressed for $\beta$ glucosidase production. FEMS Microbiol. Lett. 118: 207-212.
  5. Kang, S. W., S. W. Kim, and K. Kim. 1994. Production of cellulase and xylanase by Aspergillus niger KKS. J Microbiol. Biotechnol. 4: 49-55.
  6. Esterbauer, H., W. Steiner, I. Labudova, A. Hermann, and M. Hayn. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol. 36: 51-65. https://doi.org/10.1016/0960-8524(91)90099-6
  7. Persson, I, F. Tjemeld, and B. H. Hagerdahl. 1991. Fungal cellulolytic enzyme production: a review. Process Biochem. 26: 65-74. https://doi.org/10.1016/0032-9592(91)80019-L
  8. Webb, c, H. Fukuda, and B. Atkinson. 1986. The production of cellulase in a spouted bed fennentor using cells immobilized in biomass support particles. Biotechnol. Bioeng. 28: 41-50. https://doi.org/10.1002/bit.260280107
  9. Kang, S. W., S. W. Kim, and J. S. Lee. 1995. Production of cellulase and xylanase in a bubblecolwnn using immobilize d Aspergillus niger KKS. Appl. Biochem. Biotechnol. 53: 101-106.
  10. Ju, L. K. and O. A. Afolabi. 1999.Wastepaper hydrolysate as soluble inducing substrate for cellulase production in continuous culture of Trichoderma reesei. Biotechnol. Prog. 15: 91-97. https://doi.org/10.1021/bp980116n
  11. Kim S. W., S. W. Kang, and J. S. Lee. 1997. Cellulase and xylanase production by Aspergillus niger KKS in various bioreactors. Biores. Technol. 59: 63-67. https://doi.org/10.1016/S0960-8524(96)00127-7
  12. Hayward, T. K., J. Hamilton, D. Templeton, E. Jennings, M. Ruth, A. Tholudur, J. McMillan, M. Tucker, and A. Mohagheghi. 1999.Enzymeproduction, growth, and adaptation of T. reesei QM9414,L-27, RL-P37, and Rut C-30 conditioned yellow poplar sawdust hydrolysate. Appl. Biochem. Biotechnol. 77-79: 293-309.
  13. Vinzant, T. B., W. S. Adney, S. R. Decker, J. O. Baker, and M. E. Himmel. 1998. Presented at 20th Symposium on Biotechnology for fuels and Chemicals Denver USA 3-7 May.
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Doppelbauer, R., H. Esterbauer, W. Steiner, R. M. Lafferty, and H. Steinmuller. 1987. The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Appl. Microbiol. Biotech. 26: 485-494.
  16. Szengyel, Z., G. Zacchi, and K. Reczey. 1997. Cellulaseproduction based on hemicellulose hydrolysate from steam-pretreated willow. Appl. Biochem. Biotechnol. 63-65: 351-362.
  17. Heitz, M., E. C. Menard, P. G. Koeberle, J. Gagne, E. Chornet, R. P. Overend, J. D. Taylor, and E. Yu. 1991. Fractionation of Populus tremuloides at the pilot plant scale: Optimization of steam pretreatment conditions using the STAKE II technology. Biores. Technol. 35: 23-32. https://doi.org/10.1016/0960-8524(91)90078-X
  18. Ramos, L. P., C. Breuil, and J. N. Saddler. 1992. Comparison of steam pretreatment of Eucalyptus, Aspen and Spruce wood chip and their enzymatic hydrolysis. Appl. Biochem. Biotechnol. 34/35: 37-48. https://doi.org/10.1007/BF02920532
  19. Chen, S. and M. Wayman. 1991. Cellulase production induced by carbon source derived from waste newspaper. Process Biochem. 26: 93-100.
  20. Reczey, K., A. Brumbauer, M. Boll, Z. Szengyel, and G. Zacchi. 1998. Use of hemicellulosse hydrolysate for $\beta$-glu-cosidase fermentation, Appl. Biochem. Biotechnol. 70-72: 225-235.