Stimulation of Nitric Oxide Production in RAW 264.7 Macrophages by the Peptides Derived from Silk Fibroin.

실크 피브로인 유래 펩타이드에 의한 RAW 264.7 Macrophage의 Nitric Oxide 생성 촉진

  • 박금주 (한동대학교 대학원 생명공학과) ;
  • 현창기 (한동대학교 생물식품공학부)
  • Published : 2002.03.01

Abstract

It was found that the peptides originated from the hydrolysates of silk fibroin have in vitro immunostimulating effects in murine macrophage RAW264.7 cells. The stimulation effects on nitric oxide (NO) production resulted from treatments of acid or enzymatic hydrolysates were measured. The silk fibroin preparation isolated from cocoon was most efficiently digested by acid hydrolysis. Even though the sole treatment of acid hydrolysate stimulated the NO production in dose-dependent pattern, a part of its activity was found to be caused by the contaminated endotoxin, LPS. When each endotoxin-free hydrolysates obtained by filtering it through an ultrafiltration membrane of molecular weight (MW) cut-off 10,000 to eliminate LPS was used, the peptic hydrolysate with lowest degree of hydrolysis showed the highest activity. The fractions of peptic hydrolysate with MW ranges of 1,000∼10,000, 500∼1,000 and below 500 also showed a higher MW-higher activity correlation. From the analyses of amino acid composition of each hydrolysate, it was found that the contents of arginine, lysine, alanine and glycine residues affected the activity level of hydrolysate. The results of this study showed a possibility of utilizing fibroin as a source for immunostimulating (chemopreventive) functional peptides.

실크 피브로인의 가수분해를 통해 생산된 펩타이드 성분에 의해 murine macrophage RAW264.7 세포에 의한 nitric oxide 생성이 촉진됨을 발견하였다. 산 및 효소적 가수분해물의 가수분해도를 비교한 결과 실크 피브로인 단백질은 산 가수분해에 의해 가장 효과적으로 분해되었으며 효소적 가수분해의 경우에는 pepsin, trypsin, Alcalase의 순으로 가수분해도가 높았다. 산 가수분해물을 단독으로 macrophage에 처리하였을 때 처리농도에 따라 NO 생성촉진활성이 높아졌으나 이 활성은 가수분해물 내의 펩타이드 성분들과 오염되어 혼재하는 LPS 성분의 상호작용에 의한 것임이 확인되었다. 함유된 LPS 성분들을 한외여과에 의해 제거한 효소적 가수분해물들의 NO 생성촉진활성은 peptic hydrolysate가 가장 높았고 tryptic-, Alcalase hydrolysate 순이었다. 이러한 활성의 차이는 가수분해물 내의 고분자량 펩타이드 분포가 많을수록 활성이 높다는 관계에 기인하였으나 산 가수분해물의 경우에는 예외적으로 나타났다. 각 가수분해물의 아미노산 조성을 분석한 결과 arginine, lysine의 함량이 높을수록 활성이 높으며 alanine의 glycine에 대한 비율이 커질수록 활성이 높아졌다. 산 가수분해물의 경우에는 낮은 분자량의 펩타이드들이 많이 분포하지만 arginine 및 alanine의 함량이 높아 비교적 높은 NO 생성 촉진활성을 나타내는 것으로 확인되었다.

Keywords

References

  1. Minoura, N., M. Tsukada, and M. Nagura. 1990. Physicochemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11: 430--434.
  2. Minoura N., S. I. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai. 1995. Attachment and growth of fibroblast cells on silk fibroin. Biochem. Biophys. Res. Commun. 208: 511516.
  3. Qian J., Y. Liu, H. Liu, T. Yu, and J. Deng. 1997. Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalenemediating H202 sensor. Biosens. Bioelectron. 12: 1213-1218.
  4. Hanawa, T.,A Watanabe, T. Tsuchiya, R Ikoma, M. Hidaka, and M. Sugihara. 1995. New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem. Pharm. Bull. 42: 282-288.
  5. Luo, J., K. Chen, Q. Xu, and K. Hirabayashi. 1993. Study on foodization of fibroin and its functionality, pp. 73-87. In The collection of papers for the second international silk conference, China.
  6. Akai, H. 1999. New physiological functions of silk material. Shokuhin to Kaihatsu 34: 45-47.
  7. Gotoh, K., H. Izumi, T. Kanamoto, Y. Tamada, and H. Nakashima. 2000. Sulfated fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro. Biosci. Biotechnol. Biochem. 64: 16641670.
  8. Takano, R, K. Hirabayashi, and K. Chen. 1991. Preparation of soluble silk fibroin powder by hydrochloric acid hydrolysis. Sov. Phys. Crystallogr. 60: 358-362.
  9. Chen, K., Y. Umeda, and K. Hirabayashi. 1996. Enzymatic hydrolysis of silk fibroin. J. Seric. Sci. Jpn. 65: 131-133.
  10. Kim, M. K.., K. H. Lee, H. J. Lim, S. J. Lee, S. H. Lee, and K. S. Min. 1996. Preparation protocols for the functional polypeptide materials from cocoon. Korean Patent 98712.
  11. Kim, D. K., Y. H. Kim, K.. B. Kim, and Y. G. Chin. 2001. The changes of molecular weight and structure in the preparation process of silk fibroin powder. J. Kor. Fiber Soc. 38: 105-110.
  12. Nahm, J. H. and Y. S. Oh. 1995. A Study of pharmacological effect of silk fibroin. RDA J. Agric. Sci. 37: 145-157.
  13. Meisel, H. 1997. Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmaceutical applications. Livestock Prod. Sci. 50: 125-138.
  14. Gill, I., R Lopez-Fandino, X. Jorba, and E. N. Vulfson. 1996. Biologically active peptides and enzymatic approaches to their production. Enz. Microb. Techno!. 18: 162-183.
  15. Urban, J. L., H. M. Shepard.T, L. Rothstein, B. J. Sugarman, and H. Schreiber. 1986. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc. Natl. Acad. Sci. USA 83: 5233-5237.
  16. Nathan, C. 1992. Nitric Oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064.
  17. Nathan, C. 1995. Natural resistance and nitric oxide. Cell 82: 873-876.
  18. Mantovani, A., B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco. 1992. The origin and function of tumor-associated macrophages. Immuno!. Today 13: 265-270.
  19. Schlimme, E. and H. Meisel. 1995. Bioactive peptides derived from milk proteins. Structural, physiologicaland analytical aspects. Die Nahrung 39: 1-20.
  20. Kayser, H. and H. Meisel. 1996. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett. 383: 18-20. https://doi.org/10.1016/0014-5793(96)00207-4
  21. Sohn, D. H. 1997. Bioactive peptides enhancing health and their applications. Food Sci. Industry 30: 22-29.
  22. Yoshikawa, M., K. Kishi, M. Takahashi, A Watanabe, T. Miyamura, M. Yamazaki, and H. Chiba. 1993. Immunostimulating peptide derived from soybean protein. Ann. N. Y. Acad. Sci. 685: 375-376.
  23. Ding, A. H., C. F. Nathan, and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141: 2407-2412.
  24. Carmichael, J., W. G. DeGraff, A F. Gazdar, J. D. Minna, and J. B. Mitchell. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
  25. Remillard, J. F., M. C. Gould, P. F. Roslansky, and T. J. Novitsky. 1987. Quantitation of endotoxin in products using the LAL kinetic turbidimetric assay. Prog. Clin. Biol. Res. 231: 197-210.
  26. Hyun, C. K. and H. K. Shin. 2000. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochem. 36: 65-71. https://doi.org/10.1016/S0032-9592(00)00176-X
  27. Stuehr, D. J., S. S. Gross, I. Sakuma, R. Levi, and C. F. Nathan. 1989. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endotheliumderived relaxing factor and the chemical reactivity of nitric oxide. J. Exp. Med. 169: 1011-1120.
  28. Nishioka, K., A Constantopoulos, P. S. Satoh, and V. A Najjar. 1972. The characteristics, isolation and synthesis of the phagocytosis stimulating peptide tuftsin. Biochem. Biophys. Res. Commun. 47: 172-179.