Flux Regulation Patterns and Energy Audit of E. coli B/r and K-12

  • Lee, Jin-Won (Department of Chemical Engineering, Kwangwoon University) ;
  • Goel, Akshay (Department of Chemical Engineering, University of Pittsburgh) ;
  • Ataai, Mohammad-M. (Department of Chemical Engineering, University of Pittsburgh) ;
  • Domach, Michael-M. (Department of Chemical Engineering, Carnegie Mellon University)
  • Published : 2002.04.01

Abstract

A flux determination methodology has been built which enables to develop constrained stoichiometric relationships and metabolic balances. The analysis differs from those developed for anaerobic growth conditions in that cell mass formation is a significant sink for carbon. When combined with experimental measurements, a determined system of equations results yielded tricarboxylic acid (TCA) cycle and glycolytic fluxes. The methodology was implemented to determine the fluxes of E. coli B/r and K12, and it was found that as the growth rate in a glucose minimal medium increased, the cells became increasing glycolytic and the TCA fluxes either leveled off or declined. The pattern identified for the TCA fluxes corresponded to ${\alpha}$-ketoglutarate dehydrogenase's induction-repression pattern, thereby suggesting that the induction-repression of the enzyme could result in significant flux changes. When the minimum flux solution was contrasted to the glycolytic and TCA fluxes determined, two observations were made. First, the minimum flux could provide the cell's biosynthetic ATP requirements. Second, at a high growth rate in a glucose medium, the excess glycolytic flux exceeded that of the TCA cycle, which appeared to more closely match the biosynthetic needs.

Keywords

References

  1. Amarasingham, C. R. and B. D. Davis. 1965. Regulation of $\alpha$-ketoglutarate dehydrogenase formation in Escherichia coli. J. Biol. Chem. 240: 3664-3668
  2. Beitle, R. R. and M. M. Ataai. 1991. A unique cultivation monitoring and control system. Biotechnology Techniques 5: 77-82
  3. Dawes, I. W. and J. Mandelstam. 1970. Sporulation of Bacillus subtilis in continuous culture. J. Bacteriol. 103: 529-535
  4. Doelle, H. W., K. N. Ewingw, and N. W. Hollywood. 1982. Regulation of glucose metabolism in bacterial systems. Advances in Biochemical Engineering 23: 1-35
  5. El-Mansi, E. M. T. and W. H. Holms. 1989. Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. Journal of General Microbiology 135: 2875-2883
  6. Gray, C. T., J. W. T. Wimpenny, and M. R. Mossman. 1966. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim. Biophys. Acta 117: 33-41
  7. Hempfling, W. P. and S. E. Mainzer. 1975. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J. Bacteriol. 123: 1076-1087
  8. Hollywood, N. and H. W. Doelle. 1976. Effect of specific growth rate and glucose concentration on growth and glucose metabolism of Escherichia coli K-12. Microbios. 17: 23-33
  9. Holms, W. H. 1986. The central metabolic pathway of Escherichia coli: Relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr. Top. Cell. Reg. 28: 69-105
  10. Ingraham, J. L., O. Maaloe, and F. C. Neidhardt. 1983. Growth of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, Massachusetts
  11. Kacser, H. and J. A. Burns. 1973. The control of flux. Symp. Soc. Exp. Biol. 27: 65-104
  12. Lakshmi, T. M. and R. B. Helling. 1976. Selection for citrate synthase deficiency in icd mutants of Escherichia coli. J. Bacteriol. 127: 76-83
  13. Lee, J., A. Goel, M. M. Ataai, and M. M. Domach. 1994. Flux adaptations of citrate synthase-deficient Escherichia coli. Ann. Acad. Sci. 745: 35-50
  14. Majewski, R. A. and M. M. Domach. 1990. Effect of regulatory mechanism on hyperbolic reaction network properties. Biotechnol. Bioeng. 36: 166-178
  15. Majewski, R. A. and M. M. Domach. 1990. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35: 732-738
  16. Mandelstam, J., K. McQuillen, and I. Dawes. 1982. Biochemistry of Bacterial Growth. 3rd ed., Halsted Press, New York - Toronto
  17. Niranjan, S. C. and K.-Y. San. 1989. Analysis of a framework using material balances in metabolic pathways to elucidate cellular metabolism. Biotechnol. Bioeng. 34: 496- 500
  18. Noble, B. 1969. Applied Linear Algebra. Prentice-Hall, Inc. pp. 39-46
  19. Papoutsakis, E. T. and C. L. Meyer. 1985. Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27: 50-66
  20. Postma, P. W. 1987. Phosphotransferase system for glucose and other sugars. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium - Cellular and Molecular Biology, American Society for Microbiology. pp. 127-141
  21. Reiling, H. E., H. Laurila, and A. Fiechter. 1985. Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J. Biotech. 2: 191-206
  22. Reissig, J. L. and E. L. Wollman, 1963. Transduction des marqueurs galactose par les bacteriophages temperes 82 et 434 d'Escherichia coli. Ann. Inst. Pasteur. 105: 774-779
  23. Smith, T. E. 1968. Escherichia coli phosphoenolpyruvate carboxylase: Characterization and sedimentation behavior. Arch. Biochem. Biophys. 128: 611-622
  24. Spencer, M. E. and J. R. Guest. 1982. Molecular cloning of four tricarboxylic acid cycle genes of Escherichia coli. J. Bacteriol. 151: 542-552
  25. Stouthamer, A. H. 1979. The search for correlation between theoretical and experimental growth yields. In J. R. Quayle (ed.), Microbial Biochemistry, University Park Press, Baltimore
  26. Walsh, K. and D. E. Koshland, Jr. 1985. Branch point control by the phosphorylation state of isocitrate dehydrogenase: A quantitative examinaton of fluxes during a regulatory transition. J. Biol. Chem. 260: 8430-8437
  27. Walsh, K. and D. E. Koshland, Jr. 1984. Determination of flux through the branch point of two metabolic cycles: The tricarboxylic acid cycle and the glyoxylate shunt. J. Biol. Chem. 259: 9646-9654
  28. Wang, N. S. and G. Stephanopoulos. 1983. Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng. 25: 2177-2208
  29. Waywood, E. B. and B. D. Sanwal. 1974. The control of pyruvate kinase of Escherichia coli. J. Biol. Chem. 249: 265-280
  30. Weitzman, P. D. J. 1982. Unity and diversity in some bacterial citric acid-cycle enzymes. Advances in Microbial Physiology 22: 185-244 https://doi.org/10.1016/S0065-2911(08)60328-8
  31. Wong, H. H., R. V. Van Wegen, J. Choi, S. Y. Lee, and A. P. J. Middelberg. 1999. Metabolic analysis of poly(3- hydroxybutyrate) production by recombinant Escherichia coli. Journal of Microbiology and Biotechnology 9: 593- 603
  32. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119